Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338807

RESUMO

Biofilm-related ocular infections can lead to vision loss and are difficult to treat with antibiotics due to challenges with application and increasing microbial resistance. In turn, the design and testing of new synthetic drugs is a time- and cost-consuming process. Therefore, in this work, for the first time, we assessed the in vitro efficacy of the plant-based abietic acid molecule, both alone and when introduced to a polymeric cellulose carrier, against biofilms formed by Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans in standard laboratory settings as well as in a self-designed setting using the topologically challenging surface of the artificial eye. These analyses were performed using the standard microdilution method, the biofilm-oriented antiseptic test (BOAT), a modified disk-diffusion method, and eyeball models. Additionally, we assessed the cytotoxicity of abietic acid against eukaryotic cell lines and its anti-staphylococcal efficacy in an in vivo model using Galleria mellonella larvae. We found that abietic acid was more effective against Staphylococcus than Pseudomonas (from two to four times, depending on the test applied) and that it was generally more effective against the tested bacteria (up to four times) than against the fungus C. albicans at concentrations non-cytotoxic to the eukaryotic cell lines and to G. mellonella (256 and 512 µg/mL, respectively). In the in vivo infection model, abietic acid effectively prevented the spread of staphylococcus throughout the larvae organisms, decreasing their lethality by up to 50%. These initial results obtained indicate promising features of abietic acid, which may potentially be applied to treat ocular infections caused by pathogenic biofilms, with higher efficiency manifested against bacterial than fungal biofilms.


Assuntos
Infecções Oculares , Mariposas , Animais , Biofilmes , Mariposas/microbiologia , Abietanos/farmacologia , Antibacterianos/farmacologia , Larva/microbiologia , Staphylococcus , Testes de Sensibilidade Microbiana
2.
Polymers (Basel) ; 13(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34960888

RESUMO

In the era of the coronavirus pandemic, one of the most demanding areas was the supply of healthcare systems in essential Personal Protection Equipment (PPE), including face-shields and hands-free door openers. This need, impossible to fill by traditional manufacturing methods, was met by implementing of such emerging technologies as additive manufacturing (AM/3D printing). In this article, Poly(lactic acid) (PLA) filaments for Fused filament fabrication (FFF) technology in the context of the antibacterial properties of finished products were analyzed. The methodology included 2D radiography and scanning electron microscopy (SEM) analysis to determine the presence of antimicrobial additives in the material and their impact on such hospital pathogens as Staphylococcus aureus, Pseudomonas aeruginosa, and Clostridium difficile. The results show that not all tested materials displayed the expected antimicrobial properties after processing in FFF technology. The results showed that in the case of specific species of bacteria, the FFF samples, produced using the declared antibacterial materials, may even stimulate the microbial growth. The novelty of the results relies on methodological approach exceeding scope of ISO 22196 standard and is based on tests with three different species of bacteria in two types of media simulating common body fluids that can be found on frequently touched, nosocomial surfaces. The data presented in this article is of pivotal meaning taking under consideration the increasing interest in application of such products in the clinical setting.

3.
Materials (Basel) ; 14(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205967

RESUMO

We present a comparison of the influence of the conditioning temperature of microspheres made of medical grade poly(L-lactide) (PLLA) and polylactide with 4 wt % of D-lactide content (PLA) on the thermal and structural properties. The microspheres were fabricated using the solid-in-oil-in-water method for applications in additive manufacturing. The microspheres were annealed below the glass transition temperature (Tg), above Tg but below the onset of cold crystallization, and at two temperatures selected from the range of cold crystallization corresponding to the crystallization of the α' and α form of poly(L-lactide), i.e., at 40, 70, 90, and 120 °C, in order to verify the influence of the conditioning temperature on the sinterability of the microspheres set as the sintering window (SW). Based on differential scanning calorimetry measurements, the SWs of the microspheres were evaluated with consideration of the existence of cold crystallization and reorganization of crystal polymorphs. The results indicated that the conditioning temperature influenced the availability and range of the SWs depending on the D-lactide presence. We postulate the need for an individual approach for polylactide powders in determining the SW as a temperature range free of any thermal events. We also characterized other core powder characteristics, such as the residual solvent content, morphology, particle size distribution, powder flowability, and thermal conductivity, as key properties for successful laser sintering. The microspheres were close to spheres, and the size of the microspheres was below 100 µm. The residual solvent content decreased with the increase of the annealing temperature. The thermal conductivities were 0.073 and 0.064 W/mK for PLA and PLLA microspheres, respectively, and this depended on the spherical shape of the microspheres. The wide angle X-ray diffraction (WAXD) studies proved that an increase in the conditioning temperature caused a slight increase in the crystallinity degree for PLLA microspheres and a clear increase in crystallization for the PLA microspheres.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...