Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042792

RESUMO

To rapidly process temporal information at a low metabolic cost, biological neurons integrate inputs as an analog sum, but communicate with spikes, binary events in time. Analog neuromorphic hardware uses the same principles to emulate spiking neural networks with exceptional energy efficiency. However, instantiating high-performing spiking networks on such hardware remains a significant challenge due to device mismatch and the lack of efficient training algorithms. Surrogate gradient learning has emerged as a promising training strategy for spiking networks, but its applicability for analog neuromorphic systems has not been demonstrated. Here, we demonstrate surrogate gradient learning on the BrainScaleS-2 analog neuromorphic system using an in-the-loop approach. We show that learning self-corrects for device mismatch, resulting in competitive spiking network performance on both vision and speech benchmarks. Our networks display sparse spiking activity with, on average, less than one spike per hidden neuron and input, perform inference at rates of up to 85,000 frames per second, and consume less than 200 mW. In summary, our work sets several benchmarks for low-energy spiking network processing on analog neuromorphic hardware and paves the way for future on-chip learning algorithms.


Assuntos
Redes Neurais de Computação , Potenciais de Ação/fisiologia , Algoritmos , Encéfalo/fisiologia , Computadores , Modelos Biológicos , Modelos Neurológicos , Modelos Teóricos , Neurônios/fisiologia
2.
Front Neurosci ; 13: 1201, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798400

RESUMO

The massively parallel nature of biological information processing plays an important role due to its superiority in comparison to human-engineered computing devices. In particular, it may hold the key to overcoming the von Neumann bottleneck that limits contemporary computer architectures. Physical-model neuromorphic devices seek to replicate not only this inherent parallelism, but also aspects of its microscopic dynamics in analog circuits emulating neurons and synapses. However, these machines require network models that are not only adept at solving particular tasks, but that can also cope with the inherent imperfections of analog substrates. We present a spiking network model that performs Bayesian inference through sampling on the BrainScaleS neuromorphic platform, where we use it for generative and discriminative computations on visual data. By illustrating its functionality on this platform, we implicitly demonstrate its robustness to various substrate-specific distortive effects, as well as its accelerated capability for computation. These results showcase the advantages of brain-inspired physical computation and provide important building blocks for large-scale neuromorphic applications.

3.
Front Neurosci ; 13: 260, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30971881

RESUMO

Neuromorphic devices represent an attempt to mimic aspects of the brain's architecture and dynamics with the aim of replicating its hallmark functional capabilities in terms of computational power, robust learning and energy efficiency. We employ a single-chip prototype of the BrainScaleS 2 neuromorphic system to implement a proof-of-concept demonstration of reward-modulated spike-timing-dependent plasticity in a spiking network that learns to play a simplified version of the Pong video game by smooth pursuit. This system combines an electronic mixed-signal substrate for emulating neuron and synapse dynamics with an embedded digital processor for on-chip learning, which in this work also serves to simulate the virtual environment and learning agent. The analog emulation of neuronal membrane dynamics enables a 1000-fold acceleration with respect to biological real-time, with the entire chip operating on a power budget of 57 mW. Compared to an equivalent simulation using state-of-the-art software, the on-chip emulation is at least one order of magnitude faster and three orders of magnitude more energy-efficient. We demonstrate how on-chip learning can mitigate the effects of fixed-pattern noise, which is unavoidable in analog substrates, while making use of temporal variability for action exploration. Learning compensates imperfections of the physical substrate, as manifested in neuronal parameter variability, by adapting synaptic weights to match respective excitability of individual neurons.

4.
IEEE Trans Biomed Circuits Syst ; 12(5): 1027-1037, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30047897

RESUMO

Here, we describe a multicompartment neuron circuit based on the adaptive-exponential I&F (AdEx) model, developed for the second-generation BrainScaleS hardware. Based on an existing modular leaky integrate-and-fire (LIF) architecture designed in 65-nm CMOS, the circuit features exponential spike generation, neuronal adaptation, intercompartmental connections as well as a conductance-based reset. The design reproduces a diverse set of firing patterns observed in cortical pyramidal neurons. Further, it enables the emulation of sodium and calcium spikes, as well as N-methyl-D-aspartate plateau potentials known from apical and thin dendrites. We characterize the AdEx circuit extensions and exemplify how the interplay between passive and nonlinear active signal processing enhances the computational capabilities of single (but structured) on-chip neurons.


Assuntos
Modelos Neurológicos , Potenciais de Ação/efeitos dos fármacos , Cálcio/farmacologia , Dendritos/efeitos dos fármacos , Dendritos/fisiologia , N-Metilaspartato/farmacologia , Neurônios/fisiologia , Sódio/farmacologia , Transistores Eletrônicos
5.
IEEE Trans Biomed Circuits Syst ; 11(1): 128-142, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28113678

RESUMO

We present results from a new approach to learning and plasticity in neuromorphic hardware systems: to enable flexibility in implementable learning mechanisms while keeping high efficiency associated with neuromorphic implementations, we combine a general-purpose processor with full-custom analog elements. This processor is operating in parallel with a fully parallel neuromorphic system consisting of an array of synapses connected to analog, continuous time neuron circuits. Novel analog correlation sensor circuits process spike events for each synapse in parallel and in real-time. The processor uses this pre-processing to compute new weights possibly using additional information following its program. Therefore, to a certain extent, learning rules can be defined in software giving a large degree of flexibility. Synapses realize correlation detection geared towards Spike-Timing Dependent Plasticity (STDP) as central computational primitive in the analog domain. Operating at a speed-up factor of 1000 compared to biological time-scale, we measure time-constants from tens to hundreds of micro-seconds. We analyze variability across multiple chips and demonstrate learning using a multiplicative STDP rule. We conclude that the presented approach will enable flexible and efficient learning as a platform for neuroscientific research and technological applications.


Assuntos
Aprendizado de Máquina , Modelos Neurológicos , Redes Neurais de Computação , Plasticidade Neuronal , Neurônios , Sinapses
6.
Front Neurosci ; 7: 11, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23423583

RESUMO

In this study, we present a highly configurable neuromorphic computing substrate and use it for emulating several types of neural networks. At the heart of this system lies a mixed-signal chip, with analog implementations of neurons and synapses and digital transmission of action potentials. Major advantages of this emulation device, which has been explicitly designed as a universal neural network emulator, are its inherent parallelism and high acceleration factor compared to conventional computers. Its configurability allows the realization of almost arbitrary network topologies and the use of widely varied neuronal and synaptic parameters. Fixed-pattern noise inherent to analog circuitry is reduced by calibration routines. An integrated development environment allows neuroscientists to operate the device without any prior knowledge of neuromorphic circuit design. As a showcase for the capabilities of the system, we describe the successful emulation of six different neural networks which cover a broad spectrum of both structure and functionality.

7.
Biol Cybern ; 104(4-5): 263-96, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21618053

RESUMO

In this article, we present a methodological framework that meets novel requirements emerging from upcoming types of accelerated and highly configurable neuromorphic hardware systems. We describe in detail a device with 45 million programmable and dynamic synapses that is currently under development, and we sketch the conceptual challenges that arise from taking this platform into operation. More specifically, we aim at the establishment of this neuromorphic system as a flexible and neuroscientifically valuable modeling tool that can be used by non-hardware experts. We consider various functional aspects to be crucial for this purpose, and we introduce a consistent workflow with detailed descriptions of all involved modules that implement the suggested steps: The integration of the hardware interface into the simulator-independent model description language PyNN; a fully automated translation between the PyNN domain and appropriate hardware configurations; an executable specification of the future neuromorphic system that can be seamlessly integrated into this biology-to-hardware mapping process as a test bench for all software layers and possible hardware design modifications; an evaluation scheme that deploys models from a dedicated benchmark library, compares the results generated by virtual or prototype hardware devices with reference software simulations and analyzes the differences. The integration of these components into one hardware-software workflow provides an ecosystem for ongoing preparative studies that support the hardware design process and represents the basis for the maturity of the model-to-hardware mapping software. The functionality and flexibility of the latter is proven with a variety of experimental results.


Assuntos
Computadores , Modelos Teóricos , Sistema Nervoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...