Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Graph Model ; 80: 313-319, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29427936

RESUMO

Conformational ensembles comprise one of the fundamental concepts in statistical bioinformatics and appear in a variety of applications, e.g. molecular docking, virtual screening, searching for pharmacophores, etc. High-throughput applications require billions of conformations to be considered, thus, one often uses the rigid-body representation of molecules or its fragments to cope with the computational cost. Of particular interest is generation of the near-native conformational ensembles, which consist of conformations structurally close to the biologically relevant ones. One possible way to compose such ensembles is to control the root mean square deviation (RMSD) between the original and the generated conformations. To the best of our knowledge there is no computational approach that guarantees that all the generated conformations have the desired RMSD with respect to the reference structure. In this study we presented a fast algorithm for the construction of rigid-body conformational ensembles, which possess two main properties: (i) each generated conformation has a fixed RMSD with respect to the original conformation, (ii) generated conformations are distributed uniformly over the sphere of axes corresponding to the rigid-body motions. The algorithm is very efficient, it does not require any standard RMSD computation between the conformations and has the O(N + M) complexity to generate the required rigid-body transforms, where N is the number of atoms in the system, and M is the size of the conformational ensemble. Eurecon is applicable to an arbitrary atomic system, thus, it could be used for molecular systems of various size and type. We demonstrated Eurecon application by generating near-native conformational ensembles for a ligand placed inside a binding site, a protein dimer embedded into a membrane, and a ribosomal complex. We implemented the developed algorithm in C++ and called it Eurecon, which stands for Equidistant Uniform Rigid-body Ensemble CONstructor. A user-friendly interface allows to define the desired RMSD value, the relative amplitudes for rotation and translation motions by means of the partition parameter, and the set of axes corresponding to the rigid-body motions. Eurecon is available as the SAMSON Element (https://samson-connect.net).


Assuntos
Conformação Molecular , Simulação de Dinâmica Molecular , Algoritmos , DNA/química , Multimerização Proteica , Proteínas/química
2.
Sci Rep ; 7: 41811, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28165484

RESUMO

The complex of two membrane proteins, sensory rhodopsin II (NpSRII) with its cognate transducer (NpHtrII), mediates negative phototaxis in halobacteria N. pharaonis. Upon light activation NpSRII triggers a signal transduction chain homologous to the two-component system in eubacterial chemotaxis. Here we report on crystal structures of the ground and active M-state of the complex in the space group I212121. We demonstrate that the relative orientation of symmetrical parts of the dimer is parallel ("U"-shaped) contrary to the gusset-like ("V"-shaped) form of the previously reported structures of the NpSRII/NpHtrII complex in the space group P21212, although the structures of the monomers taken individually are nearly the same. Computer modeling of the HAMP domain in the obtained "V"- and "U"-shaped structures revealed that only the "U"-shaped conformation allows for tight interactions of the receptor with the HAMP domain. This is in line with existing data and supports biological relevance of the "U" shape in the ground state. We suggest that the "V"-shaped structure may correspond to the active state of the complex and transition from the "U" to the "V"-shape of the receptor-transducer complex can be involved in signal transduction from the receptor to the signaling domain of NpHtrII.


Assuntos
Proteínas Arqueais/metabolismo , Rodopsinas Sensoriais/metabolismo , Transdução de Sinais , Proteínas Arqueais/química , Sítios de Ligação , Halobacteriaceae/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Rodopsinas Sensoriais/química , Eletricidade Estática , Relação Estrutura-Atividade
3.
J Photochem Photobiol B ; 123: 55-8, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23619282

RESUMO

The complex of sensory rhodopsin II (NpSRII) with its cognate transducer (NpHtrII) mediates negative phototaxis in halobacteria Natronomonas pharaonis. Upon light activation NpSRII triggers, by means of NpHtrII, a signal transduction chain homologous to the two component system in eubacterial chemotaxis. Here we report on the crystal structure of the ground state of the mutant NpSRII-D75N/NpHtrII complex in the space group I212121. Mutations of this aspartic acid in light-driven proton pumps dramatically modify or/and inhibit protein functions. However, in vivo studies show that the similar D75N mutation retains functionality of the NpSRII/NpHtrII complex. The structure provides the molecular basis for the explanation of the unexpected observation that the wild and the mutant complexes display identical physiological response on light excitation.


Assuntos
Proteínas Arqueais/química , Carotenoides/química , Halorrodopsinas/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Rodopsinas Microbianas/química , Rodopsinas Sensoriais/química , Proteínas Arqueais/genética , Proteínas Arqueais/fisiologia , Proteínas Arqueais/efeitos da radiação , Carotenoides/genética , Carotenoides/efeitos da radiação , Cristalografia por Raios X , Halobacteriaceae/química , Ligação de Hidrogênio , Peptídeos e Proteínas de Sinalização Intracelular/genética , Luz , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/efeitos da radiação , Rodopsinas Microbianas/genética , Transdução de Sinais
4.
J Mol Biol ; 380(3): 581-91, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18565346

RESUMO

Components of biological macromolecules, complexes and membranes are animated by motions occurring over a wide range of time and length scales, the synergy of which is at the basis of biological activity. Understanding biological function thus requires a detailed analysis of the underlying dynamical heterogeneity. Neutron scattering, using specific isotope labeling, and molecular dynamics simulations were combined in order to study the dynamics of specific amino acid types in bacteriorhodopsin within the purple membrane (PM) of Halobacterium salinarum. Motions of leucine, isoleucine and tyrosine residues on the pico- to nanosecond time scale were examined separately as a function of temperature from 20 to 300 K. The dynamics of the three residue types displayed different temperature dependence: isoleucine residues have larger displacements compared to the global PM above 120 K; leucine residues have displacements similar to that of PM in the entire temperature range studied; and tyrosine residues have displacements smaller than that of the average membrane in an intermediate temperature range. Experimental features were mostly well reproduced by molecular dynamics simulations performed at five temperatures, which allowed the dynamical characterisation of the amino acids under study as a function of local environment. The resulting dynamical map of bacteriorhodopsin revealed that movements of a specific residue are determined by both its environment and its residue type.


Assuntos
Aminoácidos/química , Bacteriorodopsinas/química , Bacteriorodopsinas/efeitos da radiação , Simulação por Computador , Deutério , Halobacterium salinarum/química , Marcação por Isótopo , Modelos Moleculares , Nêutrons , Estrutura Secundária de Proteína , Membrana Purpúrea/química , Espalhamento de Radiação , Análise Espectral , Temperatura , Água/química
5.
Eur Biophys J ; 35(8): 675-83, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16773394

RESUMO

Data from polyphenylalanine [poly(Phe)] synthesis determination in the presence and in the absence of erythromycin have been used in conjunction with Molecular Dynamics Simulation analysis, in order to localize the functional sites affected by mutations of Thermus thermophilus ribosomal protein L4 incorporated in Escherichia coli ribosomes. We observed that alterations in ribosome capability to synthesize poly(Phe) in the absence of erythromycin were mainly correlated to shifts of A2062 and C2612 of 23S rRNA, while in the presence of erythromycin they were correlated to shifts of A2060 and U2584 of 23S rRNA. Our results suggest a means of understanding the role of the extended loop of L4 ribosomal protein in ribosomal peptidyltransferase center.


Assuntos
Escherichia coli/metabolismo , Peptídeos/metabolismo , Peptidil Transferases/metabolismo , Proteínas Ribossômicas/genética , Ribossomos/metabolismo , Thermus thermophilus/metabolismo , Sequência de Aminoácidos , Antibacterianos/farmacologia , Eritromicina/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Peptidil Transferases/química , Conformação Proteica , RNA Bacteriano/genética , RNA Ribossômico 23S/genética , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Ribossomos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...