Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transfusion ; 59(S1): 893-897, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30383901

RESUMO

Mesenchymal stem/stromal cells (MSCs) may be able to improve ischemic conditions as they can actively seek out areas of low oxygen and secrete proangiogenic factors. In more severe trauma and chronic cases, however, cells alone may not be enough. Therefore, we have combined the stem cell and angiogenic factor approaches to make a more potent therapy. We developed an engineered stem cell therapy product designed to treat critical limb ischemia that could also be used in trauma-induced scarring and fibrosis where additional collateral blood flow is needed following damage to and blockage of the primary vessels. We used MSCs from normal human donor marrow and engineered them to produce high levels of the angiogenic factor vascular endothelial growth factor (VEGF). The MSC/VEGF product has been successfully developed and characterized using good manufacturing practice (GMP)-compliant methods, and we have completed experiments showing that MSC/VEGF significantly increased blood flow in the ischemic limb of immune deficient mice, compared to the saline controls in each study. We also performed safety studies demonstrating that the injected product does not cause harm and that the cells remain around the injection site for more than 1 month after hypoxic preconditioning. An on-demand formulation system for delivery of the product to clinical sites that lack cell processing facilities is in development.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Células Cultivadas , Humanos , Transplante de Células-Tronco Mesenquimais , Cicatrização/fisiologia
2.
Mol Ther Methods Clin Dev ; 3: 16053, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27610394

RESUMO

Numerous clinical trials are utilizing mesenchymal stem cells (MSC) to treat critical limb ischemia, primarily for their ability to secrete signals that promote revascularization. These cells have demonstrated clinical safety, but their efficacy has been limited, possibly because these paracrine signals are secreted at subtherapeutic levels. In these studies the combination of cell and gene therapy was evaluated by engineering MSC with a lentivirus to overexpress vascular endothelial growth factor (VEGF). To achieve clinical compliance, the number of viral insertions was limited to 1-2 copies/cell and a constitutive promoter with demonstrated clinical safety was used. MSC/VEGF showed statistically significant increases in blood flow restoration as compared with sham controls, and more consistent improvements as compared with nontransduced MSC. Safety of MSC/VEGF was assessed in terms of genomic stability, rule-out tumorigenicity, and absence of edema or hemangiomas in vivo. In terms of retention, injected MSC/VEGF showed a steady decline over time, with a very small fraction of MSC/VEGF remaining for up to 4.5 months. Additional safety studies completed include absence of replication competent lentivirus, sterility tests, and absence of VSV-G viral envelope coding plasmid. These preclinical studies are directed toward a planned phase 1 clinical trial to treat critical limb ischemia.

3.
Cell Transplant ; 25(4): 677-86, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26850319

RESUMO

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an abnormal expansion of CAG repeats. Although pathogenesis has been attributed to this polyglutamine expansion, the underlying mechanisms through which the huntingtin protein functions have yet to be elucidated. It has been suggested that postnatal reduction of mutant huntingtin through protein interference or conditional gene knockout could prove to be an effective therapy for patients suffering from HD. For allele-specific targeting, transcription activator-like effectors (TALE) were designed to target single-nucleotide polymorphisms (SNP) in the mutant allele and packaged into a vector backbone containing KRAB to promote transcriptional repression of the disease-associated allele. Additional TALEs were packaged into a vector backbone containing heterodimeric FokI and were designed to be used as nucleases (TALEN) to cause a CAG-collapse in the mutant allele. Human HD fibroblasts were treated with each TALE-SNP or TALEN. Allele-expression was measured using a SNP-genotyping assay and mutant protein aggregation was quantified with Western blots for anti-ubiquitin. The TALE-SNP and TALEN significantly reduced mutant allele expression (p < 0.05) when compared to control transfections while not affecting expression of the nondisease allele. This study demonstrates the potential of allele-specific gene modification using TALE proteins, and provides a foundation for targeted treatment for individuals suffering from Huntington's or other genetically linked diseases.


Assuntos
Alelos , Fibroblastos/metabolismo , Proteína Huntingtina , Doença de Huntington , Polimorfismo de Nucleotídeo Único , Ativação Transcricional , Feminino , Técnicas de Silenciamento de Genes , Humanos , Proteína Huntingtina/biossíntese , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/metabolismo , Masculino
4.
Mol Ther ; 24(5): 965-77, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26765769

RESUMO

Huntington's disease (HD) is a fatal degenerative autosomal dominant neuropsychiatric disease that causes neuronal death and is characterized by progressive striatal and then widespread brain atrophy. Brain-derived neurotrophic factor (BDNF) is a lead candidate for the treatment of HD, as it has been shown to prevent cell death and to stimulate the growth and migration of new neurons in the brain in transgenic mouse models. BDNF levels are reduced in HD postmortem human brain. Previous studies have shown efficacy of mesenchymal stem/stromal cells (MSC)/BDNF using murine MSCs, and the present study used human MSCs to advance the therapeutic potential of the MSC/BDNF platform for clinical application. Double-blinded studies were performed to examine the effects of intrastriatally transplanted human MSC/BDNF on disease progression in two strains of immune-suppressed HD transgenic mice: YAC128 and R6/2. MSC/BDNF treatment decreased striatal atrophy in YAC128 mice. MSC/BDNF treatment also significantly reduced anxiety as measured in the open-field assay. Both MSC and MSC/BDNF treatments induced a significant increase in neurogenesis-like activity in R6/2 mice. MSC/BDNF treatment also increased the mean lifespan of the R6/2 mice. Our genetically modified MSC/BDNF cells set a precedent for stem cell-based neurotherapeutics and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis, Alzheimer's disease, and some forms of Parkinson's disease. These cells provide a platform delivery system for future studies involving corrective gene-editing strategies.

5.
Regen Med ; 10(5): 623-46, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26237705

RESUMO

Stem cell therapies have been explored as a new avenue for the treatment of neurologic disease and damage within the CNS in part due to their native ability to mimic repair mechanisms in the brain. Mesenchymal stem cells have been of particular clinical interest due to their ability to release beneficial neurotrophic factors and their ability to foster a neuroprotective microenviroment. While early stem cell transplantation therapies have been fraught with technical and political concerns as well as limited clinical benefits, mesenchymal stem cell therapies have been shown to be clinically beneficial and derivable from nonembryonic, adult sources. The focus of this review will be on emerging and extant stem cell therapies for juvenile and adult-onset Huntington's disease.


Assuntos
Doença de Huntington/terapia , Transplante de Células-Tronco , Adulto , Animais , Animais Geneticamente Modificados , Diferenciação Celular , Transplante de Células/métodos , Sistema Nervoso Central/patologia , Criança , Ensaios Clínicos como Assunto , Progressão da Doença , Células-Tronco Embrionárias/citologia , Humanos , Sistema Imunitário , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Fatores de Crescimento Neural/química , Neurônios/metabolismo , Neuroproteção
6.
Tissue Eng Part A ; 17(11-12): 1517-25, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21275830

RESUMO

Mesenchymal stem cells (MSCs) have been shown to contribute to the recovery of tissues through homing to injured areas, especially to hypoxic, apoptotic, or inflamed areas and releasing factors that hasten endogenous repair. In some cases genetic engineering of the MSC is desired, since they are excellent delivery vehicles. We have derived MSCs from the human embryonic stem cell (hESC) line H9 (H9-MSCs). They expressed CD105, CD90, CD73, and CD146, and lacked expression of CD45, CD34, CD14, CD31, and HLA-DR, the hESC pluripotency markers SSEA-4 and Tra-1-81, and the hESC early differentiation marker SSEA-1. Marrow-derived MSCs showed a similar phenotype. H9-MSCs did not form teratoma in our initial studies, whereas the parent H9 line did so robustly. H9-MSCs differentiated into bone, cartilage, and adipocytes in vitro, and displayed increased migration under hypoxic conditions. Finally, using a hindlimb ischemia model, H9-MSCs were shown to home to the hypoxic muscle, but not the contralateral limb, by 48 h after IV injection. In summary, we have defined methods for differentiation of hESCs into MSCs and have defined their characteristics and in vivo migratory properties.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Embrionárias/citologia , Células-Tronco Mesenquimais/citologia , Animais , Diferenciação Celular , Hipóxia Celular , Linhagem Celular , Linhagem da Célula , Movimento Celular , Forma Celular , Células Cultivadas , Citometria de Fluxo , Membro Posterior/irrigação sanguínea , Membro Posterior/patologia , Humanos , Isquemia/patologia , Isquemia/terapia , Cariotipagem , Transplante de Células-Tronco Mesenquimais , Camundongos , Teratoma/patologia
7.
Mol Ther ; 19(3): 584-93, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21119622

RESUMO

Induced pluripotent stem cells (iPSCs) have radically advanced the field of regenerative medicine by making possible the production of patient-specific pluripotent stem cells from adult individuals. By developing iPSCs to treat HIV, there is the potential for generating a continuous supply of therapeutic cells for transplantation into HIV-infected patients. In this study, we have used human hematopoietic stem cells (HSCs) to generate anti-HIV gene expressing iPSCs for HIV gene therapy. HSCs were dedifferentiated into continuously growing iPSC lines with four reprogramming factors and a combination anti-HIV lentiviral vector containing a CCR5 short hairpin RNA (shRNA) and a human/rhesus chimeric TRIM5α gene. Upon directed differentiation of the anti-HIV iPSCs toward the hematopoietic lineage, a robust quantity of colony-forming CD133(+) HSCs were obtained. These cells were further differentiated into functional end-stage macrophages which displayed a normal phenotypic profile. Upon viral challenge, the anti-HIV iPSC-derived macrophages exhibited strong protection from HIV-1 infection. Here, we demonstrate the ability of iPSCs to develop into HIV-1 resistant immune cells and highlight the potential use of iPSCs for HIV gene and cellular therapies.


Assuntos
Infecções por HIV/imunologia , HIV-1/imunologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Antígeno AC133 , Adulto , Antígenos CD/metabolismo , Antígenos CD34/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Cultivadas , Glicoproteínas/metabolismo , Células HEK293 , Infecções por HIV/virologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Peptídeos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores CCR5/genética , Receptores CCR5/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...