Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am Nat ; 201(6): 825-840, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37229704

RESUMO

AbstractEnvironmentally induced reductions in fitness components (survival, fecundity) are generally considered as passive, maladaptive responses to stress. However, there is also mounting evidence for active, programmed forms of environmentally induced cell death in unicellular organisms. While conceptual work has questioned how such programmed cell death (PCD) might be maintained by natural selection, few experimental studies have investigated how PCD influences genetic differences in longer-term fitness across environments. Here, we tracked the population dynamics of two closely related strains of the halotolerant microalga Dunaliella salina following transfers across salinities. We showed that after a salinity increase, only one of these strains displayed a massive population decline (-69% in 1 h), largely attenuated by exposure to a PCD inhibitor. However, this decline was followed by a rapid demographic rebound, characterized by faster growth than the nondeclining strain, such that sharper decline was correlated with faster subsequent growth across experiments and conditions. Strikingly, the decline was more pronounced in conditions more favorable to growth (more light, more nutrients, less competition), further suggesting that it was not simply passive. We explored several hypotheses that could explain this decline-rebound pattern, which suggests that successive stresses could select for higher environmentally induced death in this system.


Assuntos
Microalgas , Animais , Salinidade , Morte Celular , Apoptose/fisiologia , Dinâmica Populacional
2.
PLoS Biol ; 21(3): e3001895, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36961833

RESUMO

Phenotypic plasticity, the change in the phenotype of a given genotype in response to its environment of development, is a ubiquitous feature of life, enabling organisms to cope with variation in their environment. Theoretical studies predict that, under stationary environmental variation, the level of plasticity should evolve to match the predictability of selection at the timing of development. However, the extent to which patterns of evolution of plasticity for more integrated traits are mirrored by their underlying molecular mechanisms remains unclear, especially in response to well-characterized selective pressures exerted by environmental predictability. Here, we used experimental evolution with the microalgae Dunaliella salina under controlled environmental fluctuations, to test whether the evolution of phenotypic plasticity in responses to environmental predictability (as measured by the squared autocorrelation ρ2) occurred across biological levels, going from DNA methylation to gene expression to cell morphology. Transcriptomic analysis indicates clear effects of salinity and ρ2 × salinity interaction on gene expression, thus identifying sets of genes involved in plasticity and its evolution. These transcriptomic effects were independent of DNA methylation changes in cis. However, we did find ρ2-specific responses of DNA methylation to salinity change, albeit weaker than for gene expression. Overall, we found consistent evolution of reduced plasticity in less predictable environments for DNA methylation, gene expression, and cell morphology. Our results provide the first clear empirical signature of plasticity evolution at multiple levels in response to environmental predictability, and highlight the importance of experimental evolution to address predictions from evolutionary theory, as well as investigate the molecular basis of plasticity evolution.


Assuntos
Microalgas , Microalgas/genética , Microalgas/metabolismo , Fenótipo , Evolução Biológica , Metilação de DNA , Regulação da Expressão Gênica , Adaptação Biológica
3.
Evol Lett ; 6(6): 522-536, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36579167

RESUMO

Environmental tolerance curves, representing absolute fitness against the environment, are an empirical assessment of the fundamental niche, and emerge from the phenotypic plasticity of underlying phenotypic traits. Dynamic plastic responses of these traits can lead to acclimation effects, whereby recent past environments impact current fitness. Theory predicts that higher levels of phenotypic plasticity should evolve in environments that fluctuate more predictably, but there have been few experimental tests of these predictions. Specifically, we still lack experimental evidence for the evolution of acclimation effects in response to environmental predictability. Here, we exposed 25 genetically diverse populations of the halotolerant microalgae Dunaliella salina to different constant salinities, or to randomly fluctuating salinities, for over 200 generations. The fluctuating treatments differed in their autocorrelation, which determines the similarity of subsequent values, and thus environmental predictability. We then measured acclimated tolerance surfaces, mapping population growth rate against past (acclimation) and current (assay) environments. We found that experimental mean and variance in salinity caused the evolution of niche position (optimal salinity) and breadth, with respect to not only current but also past (acclimation) salinity. We also detected weak but significant evidence for evolutionary changes in response to environmental predictability, with higher predictability leading notably to lower optimal salinities and stronger acclimation effect of past environment on current fitness. We further showed that these responses are related to the evolution of plasticity for intracellular glycerol, the major osmoregulatory mechanism in this species. However, the direction of plasticity evolution did not match simple theoretical predictions. Our results underline the need for a more explicit consideration of the dynamics of environmental tolerance and its underlying plastic traits to reach a better understanding of ecology and evolution in fluctuating environments.

4.
Mol Ecol ; 31(18): 4672-4687, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35593517

RESUMO

Phenotypic plasticity, the ability of a given genotype to produce alternative phenotypes in response to its environment of development, is an important mechanism for coping with variable environments. While the mechanisms underlying phenotypic plasticity are diverse, their relative contributions need to be investigated quantitatively to better understand the evolvability of plasticity across biological levels. This requires relating plastic responses of the epigenome, transcriptome, and organismal phenotype, and investigating how they vary with the genotype. Here we carried out this approach for responses to osmotic stress in Dunaliella salina, a green microalga that is a model organism for salinity tolerance. We compared two strains that show markedly different demographic responses to osmotic stress, and showed that these phenotypic responses involve strain- and environment-specific variation in gene expression levels, but a relative low-albeit significant-effect of strain × environment interaction. We also found an important genotype effect on the genome-wide methylation pattern, but little contribution from environmental conditions to the latter. However, we did detect a significant marginal effect of epigenetic variation on gene expression, beyond the influence of genetic differences on epigenetic state, and we showed that hypomethylated regions are correlated with higher gene expression. Our results indicate that epigenetic mechanisms are either not involved in the rapid plastic response to environmental change in this species, or involve only few changes in trans that are sufficient to trigger concerted changes in the expression of many genes, and phenotypic responses by multiple traits.


Assuntos
Microalgas , Transcriptoma , Epigenômica , Microalgas/genética , Pressão Osmótica , Fenótipo , Transcriptoma/genética
5.
PLoS Genet ; 17(6): e1009611, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34161327

RESUMO

Most natural environments exhibit a substantial component of random variation, with a degree of temporal autocorrelation that defines the color of environmental noise. Such environmental fluctuations cause random fluctuations in natural selection, affecting the predictability of evolution. But despite long-standing theoretical interest in population genetics in stochastic environments, there is a dearth of empirical estimation of underlying parameters of this theory. More importantly, it is still an open question whether evolution in fluctuating environments can be predicted indirectly using simpler measures, which combine environmental time series with population estimates in constant environments. Here we address these questions by using an automated experimental evolution approach. We used a liquid-handling robot to expose over a hundred lines of the micro-alga Dunaliella salina to randomly fluctuating salinity over a continuous range, with controlled mean, variance, and autocorrelation. We then tracked the frequencies of two competing strains through amplicon sequencing of nuclear and choloroplastic barcode sequences. We show that the magnitude of environmental fluctuations (determined by their variance), but also their predictability (determined by their autocorrelation), had large impacts on the average selection coefficient. The variance in frequency change, which quantifies randomness in population genetics, was substantially higher in a fluctuating environment. The reaction norm of selection coefficients against constant salinity yielded accurate predictions for the mean selection coefficient in a fluctuating environment. This selection reaction norm was in turn well predicted by environmental tolerance curves, with population growth rate against salinity. However, both the selection reaction norm and tolerance curves underestimated the variance in selection caused by random environmental fluctuations. Overall, our results provide exceptional insights into the prospects for understanding and predicting genetic evolution in randomly fluctuating environments.


Assuntos
Adaptação Fisiológica/genética , DNA/genética , Genética Populacional , Microalgas/genética , Modelos Genéticos , Evolução Biológica , Núcleo Celular/genética , Cloroplastos/genética , Código de Barras de DNA Taxonômico , Variação Genética , Microalgas/classificação , Salinidade , Seleção Genética
6.
Mol Biol Rep ; 47(10): 8243-8250, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32897521

RESUMO

Microsatellites are widely used to investigate connectivity and parentage in marine organisms. Despite surgeonfish (Acanthuridae) being dominant members of most reef fish assemblages and having an ecological key role in coral reef ecosystems, there is limited information describing the scale at which populations are connected and very few microsatellite markers have been screened. Here, we developed fourteen microsatellite markers for the convict surgeonfish Acanthurus triostegus with the aim to infer its genetic connectivity throughout its distribution range. Genetic diversity and variability was tested over 152 fishes sampled from four locations across the Indo-Pacific: Mayotte (Western Indian Ocean), Papua New Guinea and New Caledonia (Southwestern Pacific Ocean), and Moorea (French Polynesia). Over all locations, the number of alleles per locus varied from 5 to 24 per locus, and expected heterozygosities ranged from 0.468 to 0.941. Significant deviations from Hardy-Weinberg equilibrium were detected for two loci in two to three locations and were attributed to the presence of null alleles. These markers revealed for the first time a strong and significant distinctiveness between Indian Ocean and Pacific Ocean A. triostegus populations. We further conducted cross-species amplification tests in 13 Pacific congener species to investigate the possible use of these microsatellites in other Acanthuridae species. The phylogenetic placement of A. triostegus branching off from the clade containing nearly all Acanthurus + Ctenochaetus species likely explain the rather good transferability of these microsatellite markers towards other Acanthuridae species. This suggests that this fourteen new microsatellite loci will be helpful tools not only for inferring population structure of various surgeonfish but also to clarify systematic relationships among Acanthuridae.


Assuntos
Peixes/genética , Variação Genética , Repetições de Microssatélites , Animais , Especificidade da Espécie
7.
Ecol Lett ; 23(11): 1664-1672, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32869431

RESUMO

Phenotypic plasticity is a prominent mechanism for coping with variable environments, and a key determinant of extinction risk. Evolutionary theory predicts that phenotypic plasticity should evolve to lower levels in environments that fluctuate less predictably, because they induce mismatches between plastic responses and selective pressures. However, this prediction is difficult to test in nature, where environmental predictability is not controlled. Here, we exposed 32 lines of the halotolerant microalga Dunaliella salina to ecologically realistic, randomly fluctuating salinity, with varying levels of predictability, for 500 generations. We found that morphological plasticity evolved to lower degrees in lines that experienced less predictable environments. Evolution of plasticity mostly concerned phases with slow population growth, rather than the exponential phase where microbes are typically phenotyped. This study underlines that long-term experiments with complex patterns of environmental change are needed to test theories about population responses to altered environmental predictability, as currently observed under climate change.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Meio Ambiente , Fenótipo , Crescimento Demográfico
8.
Nat Ecol Evol ; 4(2): 193-201, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31988445

RESUMO

Random environmental fluctuations pose major threats to wild populations. As patterns of environmental noise are themselves altered by global change, there is a growing need to identify general mechanisms underlying their effects on population dynamics. This notably requires understanding and predicting population responses to the colour of environmental noise, in other words its temporal autocorrelation pattern. Here, we show experimentally that environmental autocorrelation has a large influence on population dynamics and extinction rates, which can be predicted accurately provided that a memory of past environment is accounted for. We exposed nearly 1,000 lines of the microalgae Dunaliella salina to randomly fluctuating salinity, with autocorrelation ranging from negative to highly positive. We found lower population growth, and twice as many extinctions, under lower autocorrelation. These responses closely matched predictions based on a tolerance curve with environmental memory, showing that non-genetic inheritance can be a major driver of population dynamics in randomly fluctuating environments.


Assuntos
Meio Ambiente , Crescimento Demográfico , Dinâmica Populacional
9.
Protist ; 168(5): 612-635, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29028580

RESUMO

The green picoalgal genus Micromonas is broadly distributed in estuaries, coastal marine habitats and open oceans, from the equator to the poles. Phylogenetic, ecological and genomic analyses of culture strains and natural populations have suggested that this cosmopolitan genus is composed of several cryptic species corresponding to genetic lineages. We performed a detailed analysis of variations in morphology, pigment content, and sequences of the nuclear-encoded small-subunit rRNA gene and the second internal transcribed spacer (ITS2) from strains isolated worldwide. A new morphological feature of the genus, the presence of tip hairs at the extremity of the hair point, was discovered and subtle differences in hair point length were detected between clades. Clear non-homoplasious synapomorphies were identified in the small-subunit rRNA gene and ITS2 spacer sequences of five genetic lineages. These findings lead us to provide emended descriptions of the genus Micromonas, of the type species M. pusilla, and of the recently described species M. commoda, as well as to describe 2 new species, M. bravo and M. polaris. By clarifying the status of the genetic lineages identified within Micromonas, these formal descriptions will facilitate further interpretations of large-scale analyses investigating ecological trends in time and space for this widespread picoplankter.


Assuntos
Clorófitas/classificação , Clorófitas/genética , Genoma , Filogenia , Sequência de Bases , Clorófitas/citologia , Pigmentos Biológicos/análise , RNA de Algas/genética , RNA Ribossômico , Alinhamento de Sequência , Especificidade da Espécie
10.
PLoS One ; 12(5): e0178239, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542261

RESUMO

Previous seascape genetics studies have emphasized the role of ocean currents and geographic distances to explain the genetic structure of marine species, but the role of benthic habitat has been more rarely considered. Here, we compared the population genetic structure observed in West Pacific giant clam populations against model simulations that accounted habitat composition and configuration, geographical distance, and oceanic currents. Dispersal determined by geographical distance provided a modelled genetic structure in better agreement with the observations than dispersal by oceanic currents, possibly due to insufficient spatial resolution of available oceanographic and coastal circulation models. Considering both habitat composition and configuration significantly improved the match between simulated and observed genetic structures. This study emphasizes the importance of a reefscape genetics approach to population ecology, evolution and conservation in the sea.


Assuntos
Organismos Aquáticos/genética , Bivalves/genética , Recifes de Corais , Animais , Organismos Aquáticos/fisiologia , Bivalves/fisiologia , Demografia , Ecossistema , Modelos Biológicos , Nova Caledônia , Oceanos e Mares , Vanuatu
11.
ISME J ; 8(6): 1221-36, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24401861

RESUMO

Marine Synechococcus cyanobacteria constitute a monophyletic group that displays a wide latitudinal distribution, ranging from the equator to the polar fronts. Whether these organisms are all physiologically adapted to stand a large temperature gradient or stenotherms with narrow growth temperature ranges has so far remained unexplored. We submitted a panel of six strains, isolated along a gradient of latitude in the North Atlantic Ocean, to long- and short-term variations of temperature. Upon a downward shift of temperature, the strains showed strikingly distinct resistance, seemingly related to their latitude of isolation, with tropical strains collapsing while northern strains were capable of growing. This behaviour was associated to differential photosynthetic performances. In the tropical strains, the rapid photosystem II inactivation and the decrease of the antioxydant ß-carotene relative to chl a suggested a strong induction of oxidative stress. These different responses were related to the thermal preferenda of the strains. The northern strains could grow at 10 °C while the other strains preferred higher temperatures. In addition, we pointed out a correspondence between strain isolation temperature and phylogeny. In particular, clades I and IV laboratory strains were all collected in the coldest waters of the distribution area of marine Synechococus. We, however, show that clade I Synechococcus exhibit different levels of adaptation, which apparently reflect their location on the latitudinal temperature gradient. This study reveals the existence of lineages of marine Synechococcus physiologically specialised in different thermal niches, therefore suggesting the existence of temperature ecotypes within the marine Synechococcus radiation.


Assuntos
Água do Mar/microbiologia , Synechococcus/classificação , Temperatura , Oceano Atlântico , Temperatura Baixa , Fotossíntese , Filogenia , Synechococcus/genética , Synechococcus/isolamento & purificação
12.
J Soc Biol ; 201(3): 259-66, 2007.
Artigo em Francês | MEDLINE | ID: mdl-18157078

RESUMO

The number of biological introductions has increased since the 1970's and is now considered as the second major cause of the biodiversity erosion, after fragmentation or disappearance of habitat. Beyond the threat they represent for the ecosystem equilibrium, introduced species are interesting models to study fundamental issues in ecology and evolution like the processes of dispersal and adaptation to novel environments. In this context, species introduced over a large geographic range and spectrum of habitats provide an excellent opportunity for comparing the mechanisms that promote introduction and settlement between different environments. In this paper, based on a case study, the worldwide introduction of the brown alga Undaria pinnatifida, and on the use of molecular tools, we aim at examining several processes promoting or occurring during biological introductions. Our results showed that i) multiple processes can account for the success of the pandemic introduction of this alga, highlighting the necessity to study introduced species in relation with the ecosystem they invaded, ii) the recurrence of introductions is a critical component in the dynamics of settlement and iii) human activities can play a major role not only during the primary introduction but also for the sustainable settlement of introduced species in natural environments by providing reservoir of migrants. Taken together, these results demonstrate that the complexity of mechanisms occurring in biological invasion require spatial but also long-term analysis.


Assuntos
Kelp/fisiologia , Undaria/fisiologia , Ecossistema , Geografia , Japão , Kelp/classificação , Undaria/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA