Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4184, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760360

RESUMO

Halide perovskites show great optoelectronic performance, but their favorable properties are paired with unusually strong anharmonicity. It was proposed that this combination derives from the ns2 electron configuration of octahedral cations and associated pseudo-Jahn-Teller effect. We show that such cations are not a prerequisite for the strong anharmonicity and low-energy lattice dynamics encountered in these materials. We combine X-ray diffraction, infrared and Raman spectroscopies, and molecular dynamics to contrast the lattice dynamics of CsSrBr3 with those of CsPbBr3, two compounds that are structurally similar but with the former lacking ns2 cations with the propensity to form electron lone pairs. We exploit low-frequency diffusive Raman scattering, nominally symmetry-forbidden in the cubic phase, as a fingerprint of anharmonicity and reveal that low-frequency tilting occurs irrespective of octahedral cation electron configuration. This highlights the role of structure in perovskite lattice dynamics, providing design rules for the emerging class of soft perovskite semiconductors.

2.
J Chem Phys ; 160(13)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38557853

RESUMO

Finite-temperature calculations are relevant for rationalizing material properties, yet they are computationally expensive because large system sizes or long simulation times are typically required. Circumventing the need for performing many explicit first-principles calculations, tight-binding and machine-learning models for the electronic structure emerged as promising alternatives, but transferability of such methods to elevated temperatures in a data-efficient way remains a great challenge. In this work, we suggest a tight-binding model for efficient and accurate calculations of temperature-dependent properties of semiconductors. Our approach utilizes physics-informed modeling of the electronic structure in the form of hybrid-orbital basis functions and numerically integrating atomic orbitals for the distance dependence of matrix elements. We show that these design choices lead to a tight-binding model with a minimal amount of parameters that are straightforwardly optimized using density functional theory or alternative electronic-structure methods. The temperature transferability of our model is tested by applying it to existing molecular-dynamics trajectories without explicitly fitting temperature-dependent data and comparison with density functional theory. We utilize it together with machine-learning molecular dynamics and hybrid density functional theory for the prototypical semiconductor gallium arsenide. We find that including the effects of thermal expansion on the onsite terms of the tight-binding model is important in order to accurately describe electronic properties at elevated temperatures in comparison with experiment.

3.
J Phys Chem Lett ; 13(25): 5938-5945, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35731950

RESUMO

We employ terahertz-range temperature-dependent Raman spectroscopy and first-principles lattice dynamical calculations to show that the undoped sodium ion conductors Na3PS4 and isostructural Na3PSe4 both exhibit anharmonic lattice dynamics. The anharmonic effects in the compounds involve coupled host lattice-Na+ ion dynamics that drive the tetragonal-to-cubic phase transition in both cases, but with a qualitative difference in the anharmonic character of the transition. Na3PSe4 shows an almost purely displacive character with the soft modes disappearing in the cubic phase as the change in symmetry shifts these modes to the Raman-inactive Brillouin zone boundary. Na3PS4 instead shows an order-disorder character in the cubic phase, with the soft modes persisting through the phase transition and remaining Raman active in the cubic phase, violating Raman selection rules for that phase. Our findings highlight the important role of coupled host lattice-mobile ion dynamics in vibrational instabilities that are coincident with the exceptional conductivity of these Na+ ion conductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...