Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2430, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499534

RESUMO

Two-dimensional (2D) materials are considered for numerous applications in microelectronics, although several challenges remain when integrating them into functional devices. Weak adhesion is one of them, caused by their chemical inertness. Quantifying the adhesion of 2D materials on three-dimensional surfaces is, therefore, an essential step toward reliable 2D device integration. To this end, button shear testing is proposed and demonstrated as a method for evaluating the adhesion of 2D materials with the examples of graphene, hexagonal boron nitride (hBN), molybdenum disulfide, and tungsten diselenide on silicon dioxide and silicon nitride substrates. We propose a fabrication process flow for polymer buttons on the 2D materials and establish suitable button dimensions and testing shear speeds. We show with our quantitative data that low substrate roughness and oxygen plasma treatments on the substrates before 2D material transfer result in higher shear strengths. Thermal annealing increases the adhesion of hBN on silicon dioxide and correlates with the thermal interface resistance between these materials. This establishes button shear testing as a reliable and repeatable method for quantifying the adhesion of 2D materials.

2.
Nanotechnology ; 34(28)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37040718

RESUMO

Transition metal dichalcogenide (TMDC) monolayers with their direct band gap in the visible to near-infrared spectral range have emerged over the past years as highly promising semiconducting materials for optoelectronic applications. Progress in scalable fabrication methods for TMDCs like metal-organic chemical vapor deposition (MOCVD) and the ambition to exploit specific material properties, such as mechanical flexibility or high transparency, highlight the importance of suitable device concepts and processing techniques. In this work, we make use of the high transparency of TMDC monolayers to fabricate transparent light-emitting devices (LEDs). MOCVD-grown WS2is embedded as the active material in a scalable vertical device architecture and combined with a silver nanowire (AgNW) network as a transparent top electrode. The AgNW network was deposited onto the device by a spin-coating process, providing contacts with a sheet resistance below 10 Ω sq-1and a transmittance of nearly 80%. As an electron transport layer we employed a continuous 40 nm thick zinc oxide (ZnO) layer, which was grown by atmospheric pressure spatial atomic layer deposition (AP-SALD), a precise tool for scalable deposition of oxides with defined thickness. With this, LEDs with an average transmittance over 60% in the visible spectral range, emissive areas of several mm2and a turn-on voltage of around 3 V are obtained.

3.
Nanotechnology ; 34(20)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36745916

RESUMO

Structural defects in transition metal dichalcogenide (TMDC) monolayers (ML) play a significant role in determining their (opto)electronic properties, triggering numerous efforts to control defect densities during material growth or by post-growth treatments. Various types of TMDC have been successfully deposited by MOCVD (metal-organic chemical vapor deposition), which is a wafer-scale deposition technique with excellent uniformity and controllability. However, so far there are no findings on the extent to which the incorporation of defects can be controlled by growth parameters during MOCVD processes of TMDC. In this work, we investigate the effect of growth temperature and precursor ratio during MOCVD of tungsten diselenide (WSe2) on the growth of ML domains and their impact on the density of defects. The aim is to find parameter windows that enable the deposition of WSe2ML with high crystal quality, i.e. a low density of defects. Our findings confirm that the growth temperature has a large influence on the crystal quality of TMDC, significantly stronger than found for the W to Se precursor ratio. Raising the growth temperatures in the range of 688 °C to 791 °C leads to an increase of the number of defects, dominating photoluminescence (PL) at low temperatures (5.6 K). In contrast, an increase of the molar precursor ratio (DiPSe/WCO) from 1000 up to 100 000 leads to less defect-related PL at low temperatures.

4.
Sci Rep ; 12(1): 18743, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335187

RESUMO

Metal-free chemical vapor deposition (CVD) of single-layer graphene (SLG) on c-plane sapphire has recently been demonstrated for wafer diameters of up to 300 mm, and the high quality of the SLG layers is generally characterized by integral methods. By applying a comprehensive analysis approach, distinct interactions at the graphene-sapphire interface and local variations caused by the substrate topography are revealed. Regions near the sapphire step edges show tiny wrinkles with a height of about 0.2 nm, framed by delaminated graphene as identified by the typical Dirac cone of free graphene. In contrast, adsorption of CVD SLG on the hydroxyl-terminated α-Al2O3 (0001) terraces results in a superstructure with a periodicity of (2.66 ± 0.03) nm. Weak hydrogen bonds formed between the hydroxylated sapphire surface and the π-electron system of SLG result in a clean interface. The charge injection induces a band gap in the adsorbed graphene layer of about (73 ± 3) meV at the Dirac point. The good agreement with the predictions of a theoretical analysis underlines the potential of this hybrid system for emerging electronic applications.

5.
ACS Appl Mater Interfaces ; 14(30): 35184-35193, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35852455

RESUMO

A promising strategy toward ultrathin, sensitive photodetectors is the combination of a photoactive semiconducting transition-metal dichalcogenide (TMDC) monolayer like MoS2 with highly conductive graphene. Such devices often exhibit a complex and contradictory photoresponse as incident light can trigger both photoconductivity and photoinduced desorption of molecules from the surface. Here, we use metal-organic chemical vapor deposition (MOCVD) to directly grow MoS2 on top of graphene that is deposited on a sapphire wafer via chemical vapor deposition (CVD) for realizing graphene-MoS2 photodetectors. Two-color optical pump-electrical probe experiments allow for separation of light-induced carrier transfer across the graphene-MoS2 heterointerface from adsorbate-induced effects. We demonstrate that adsorbates strongly modify both magnitude and sign of the photoconductivity. This is attributed to a change of the graphene doping from p- to n-type in case adsorbates are being desorbed, while in either case, photogenerated electrons are transferred from MoS2 to graphene. This nondestructive probing method sheds light on the charge carrier transfer mechanisms and the role of adsorbates in two-dimensional (2D) heterostructure photodetectors.

6.
Adv Mater ; 34(48): e2108469, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35075681

RESUMO

The design, fabrication, and characterization of wafer-scale, zero-bias power detectors based on 2D MoS2 field-effect transistors (FETs) are demonstrated. The MoS2 FETs are fabricated using a wafer-scale process on 8 µm-thick polyimide film, which, in principle, serves as a flexible substrate. The performances of two chemical vapor deposition MoS2 sheets, grown with different processes and showing different thicknesses, are analyzed and compared from the single device fabrication and characterization steps to the circuit level. The power-detector prototypes exploit the nonlinearity of the transistors above the cut-off frequency of the devices. The proposed detectors are designed employing a transistor model based on measurement results. The fabricated circuits operate in the Ku-band between 12 and 18 GHz, with a demonstrated voltage responsivity of 45 V W-1 at 18 GHz in the case of monolayer MoS2 and 104 V W-1 at 16 GHz in the case of multilayer MoS2 , both achieved without applied DC bias. They are the best-performing power detectors fabricated on flexible substrate reported to date. The measured dynamic range exceeds 30 dB, outperforming other semiconductor technologies like silicon complementary metal-oxide-semiconductor circuits and GaAs Schottky diodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...