Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
GeoResJ ; 14(9): 1-19, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32864337

RESUMO

Legacy soil data have been produced over 70 years in nearly all countries of the world. Unfortunately, data, information and knowledge are still currently fragmented and at risk of getting lost if they remain in a paper format. To process this legacy data into consistent, spatially explicit and continuous global soil information, data are being rescued and compiled into databases. Thousands of soil survey reports and maps have been scanned and made available online. The soil profile data reported by these data sources have been captured and compiled into databases. The total number of soil profiles rescued in the selected countries is about 800,000. Currently, data for 117, 000 profiles are compiled and harmonized according to GlobalSoilMap specifications in a world level database (WoSIS). The results presented at the country level are likely to be an underestimate. The majority of soil data is still not rescued and this effort should be pursued. The data have been used to produce soil property maps. We discuss the pro and cons of top-down and bottom-up approaches to produce such maps and we stress their complementarity. We give examples of success stories. The first global soil property maps using rescued data were produced by a top-down approach and were released at a limited resolution of 1km in 2014, followed by an update at a resolution of 250m in 2017. By the end of 2020, we aim to deliver the first worldwide product that fully meets the GlobalSoilMap specifications.

3.
Nature ; 527(7576): 49-53, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26536956

RESUMO

Over two centuries of economic growth have put undeniable pressure on the ecological systems that underpin human well-being. While it is agreed that these pressures are increasing, views divide on how they may be alleviated. Some suggest technological advances will automatically keep us from transgressing key environmental thresholds; others that policy reform can reconcile economic and ecological goals; while a third school argues that only a fundamental shift in societal values can keep human demands within the Earth's ecological limits. Here we use novel integrated analysis of the energy-water-food nexus, rural land use (including biodiversity), material flows and climate change to explore whether mounting ecological pressures in Australia can be reversed, while the population grows and living standards improve. We show that, in the right circumstances, economic and environmental outcomes can be decoupled. Although economic growth is strong across all scenarios, environmental performance varies widely: pressures are projected to more than double, stabilize or fall markedly by 2050. However, we find no evidence that decoupling will occur automatically. Nor do we find that a shift in societal values is required. Rather, extensions of current policies that mobilize technology and incentivize reduced pressure account for the majority of differences in environmental performance. Our results show that Australia can make great progress towards sustainable prosperity, if it chooses to do so.


Assuntos
Mudança Climática/economia , Conservação dos Recursos Naturais , Desenvolvimento Econômico , Política Ambiental , Modelos Econômicos , Formulação de Políticas , Austrália , Biodiversidade , Conservação de Recursos Energéticos , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/legislação & jurisprudência , Conservação dos Recursos Naturais/tendências , Desenvolvimento Econômico/legislação & jurisprudência , Desenvolvimento Econômico/tendências , Política Ambiental/economia , Política Ambiental/legislação & jurisprudência , Política Ambiental/tendências , Abastecimento de Alimentos , Política , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...