Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207697

RESUMO

Apple Replant Disease (ARD) is a significant problem in apple orchards that causes root tissue damage, stunted plant growth, and decline in fruit quality, size, and overall yield. Dysbiosis of apple root-associated microbiome and selective richness of Streptomyces species in the rhizosphere typically concurs root impairment associated with ARD. However, possible roles of Streptomyces secondary metabolites within these observations remain unstudied. Therefore, we employed the One Strain Many Compounds (OSMAC) approach coupled to high-performance liquid chromatography-high-resolution tandem mass spectrometry (HPLC-HRMSn) to evaluate the chemical ecology of an apple root-associated Streptomycesciscaucasicus strain GS2, temporally over 14 days. The chemical OSMAC approach comprised cultivation media alterations using six different media compositions, which led to the biosynthesis of the iron-chelated siderophores, ferrioxamines. The biological OSMAC approach was concomitantly applied by dual-culture cultivation for microorganismal interactions with an endophytic Streptomyces pulveraceus strain ES16 and the pathogen Cylindrocarpon olidum. This led to the modulation of ferrioxamines produced and further triggered biosynthesis of the unchelated siderophores, desferrioxamines. The structures of the compounds were elucidated using HRMSn and by comparison with the literature. We evaluated the dynamics of siderophore production under the combined influence of chemical and biological OSMAC triggers, temporally over 3, 7, and 14 days, to discern the strain's siderophore-mediated chemical ecology. We discuss our results based on the plausible chemical implications of S. ciscaucasicus strain GS2 in the rhizosphere.


Assuntos
Malus/microbiologia , Raízes de Plantas/microbiologia , Sideróforos/metabolismo , Streptomyces/química , Cromatografia Líquida de Alta Pressão/métodos , Malus/metabolismo , Raízes de Plantas/metabolismo , Rizosfera , Espectrometria de Massas em Tandem/métodos
2.
Curr Issues Mol Biol ; 30: 89-106, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30070653

RESUMO

After replanting apple (Malus domestica Borkh.) on the same site severe growth suppressions, and a decline in yield and fruit quality are observed in all apple producing areas worldwide. The causes of this complex phenomenon, called apple replant disease (ARD), are only poorly understood up to now which is in part due to inconsistencies in terms and methodologies. Therefore we suggest the following definition for ARD: ARD describes a harmfully disturbed physiological and morphological reaction of apple plants to soils that faced alterations in their (micro-) biome due to the previous apple cultures. The underlying interactions likely have multiple causes that extend beyond common analytical tools in microbial ecology. They are influenced by soil properties, faunal vectors, and trophic cascades, with genotype-specific effects on plant secondary metabolism, particularly phytoalexin biosynthesis. Yet, emerging tools allow to unravel the soil and rhizosphere (micro-) biome, to characterize alterations of habitat quality, and to decipher the plant reactions. Thereby, deep insights into the reactions taking place at the root rhizosphere interface will be gained. Counteractions are suggested, taking into account that culture management should emphasize on improving soil microbial and faunal diversity as well as habitat quality rather than focus on soil disinfection.


Assuntos
Suscetibilidade a Doenças , Malus/fisiologia , Doenças das Plantas/microbiologia , Bactérias , Fungos , Interações Hospedeiro-Patógeno , Interações Microbianas , Microbiota , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Microbiologia do Solo
3.
Mycorrhiza ; 26(5): 429-40, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26846148

RESUMO

In previous investigations, we found that Acremonium strictum (strain DSM 100709) developed intracellular structures with similarity to mycelia of ericoid mycorrhizal fungi in the rhizodermal cells of flax plants and in hair roots of Rhododendron plantlets. A. strictum had also been isolated from roots of ericaceous salal plants and was described as an unusual ericoid mycorrhizal fungus (ERMF). As its mycorrhizal traits were doubted, we revised the hypothesis of a mycorrhizal nature of A. strictum. A successful synthesis of mycorrhiza in hair roots of inoculated ericaceous plants was a first step of evidence, followed by fluorescence microscopy with FUN(®)1 cell stain to observe the vitality of the host cells at the early infection stage. In inoculation trials with in vitro-raised mycorrhiza-free Rhododendron plants in axenic liquid culture and in greenhouse substrate culture, A. strictum was never observed in living hair root cells. As compared to the ERMF Oidiodendron maius and Rhizoscyphus ericae that invaded metabolically active host cells and established a symbiotic unit, A. strictum was only found in cells that were dead or in the process of dying and in the apoplast. In conclusion, A. strictum does not behave like a common ERMF-if it is one at all. A comparison of A. strictum isolates from ericaceous and non-ericaceous hosts could reveal further identity details to generalize or specify our findings on the symbiotic nature of A. strictum. At least, the staining method enables to discern between true mycorrhizal and other root endophytes-a tool for further studies.


Assuntos
Acremonium/fisiologia , Micorrizas/classificação , Raízes de Plantas/microbiologia , Rhododendron/microbiologia , Acremonium/classificação , Acremonium/citologia , Sobrevivência Celular , Micorrizas/citologia , Micorrizas/fisiologia , Raízes de Plantas/citologia , Rhododendron/citologia
4.
Mycorrhiza ; 15(8): 596-605, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16133256

RESUMO

Micropropagated rose plants (Rosa hybrida L., cv. New Dawn) were inoculated with the arbuscular mycorrhizal (AM) fungus Glomus intraradices (Schenk and Smith) and subjected to different drought regimens. The dual objectives of these experiments were to investigate the mechanism and the extent to which AM can prevent drought damages and whether physiological analyses reveal enhanced drought tolerance of an economically important plant such as the rose. In a long-term drought experiment with four different water regimens, visual scoring of wilt symptoms affirmed that AM in a selected host-symbiont combination increased plant performance. This effect was mostly expressed if moderate drought stress was constantly applied over a long period. In a short-term experiment in which severe drought stress was implemented and plants were allowed to recover after 4 or 9 days, no visual differences between mycorrhizal and non-mycorrhizal roses were observed. Therefore, the early physiological steps conferring drought tolerance were prone to investigation. Proline content in leaves proved to be an unsuitable marker for AM-induced drought tolerance, whereas analysis of chlorophyll a fluorescence using the JIP test (collecting stress-induced changes of the polyphasic O-J-I-P fluorescence kinetics in a non-destructive tissue screening) was more explanatory. Parameters derived from this test could describe the extent of foliar stress response and help to differentiate physiological mechanisms of stress tolerance. AM led to a more intense electron flow and a higher productive photosynthetic activity at several sites of the photosynthetic electron transport chain. A K step, known as a stress indicator of general character, appeared in the fluorescence transient only in drought-stressed non-mycorrhizal plants; conversely, the data elucidate a stabilising effect of AM on the oxygen-evolving complex at the donor site of photosystem (PS) II and at the electron-transport chain between PS II and PS I. If drought stress intensity was reduced by a prolonged and milder drying phase, these significant tolerance features were less pronounced or missing, indicating a possible threshold level for mycorrhizal tolerance induction.


Assuntos
Adaptação Fisiológica , Desastres , Fungos/fisiologia , Micorrizas/fisiologia , Rosa/fisiologia , Simbiose , Clorofila/biossíntese , Clorofila A , Transporte de Elétrons , Fotossíntese , Brotos de Planta/crescimento & desenvolvimento , Prolina/biossíntese , Rosa/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...