Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
PLoS Pathog ; 20(4): e1012191, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683845

RESUMO

An imbalance between suppressor and effector immune responses may preclude cure in chronic parasitic diseases. In the case of Trypanosoma cruzi infection, specialized regulatory Foxp3+ T (Treg) cells suppress protective type-1 effector responses. Herein, we investigated the kinetics and underlying mechanisms behind the regulation of protective parasite-specific CD8+ T cell immunity during acute T. cruzi infection. Using the DEREG mouse model, we found that Treg cells play a role during the initial stages after T. cruzi infection, restraining the magnitude of CD8+ T cell responses and parasite control. Early Treg cell depletion increased the frequencies of polyfunctional short-lived, effector T cell subsets, without affecting memory precursor cell formation or the expression of activation, exhaustion and functional markers. In addition, Treg cell depletion during early infection minimally affected the antigen-presenting cell response but it boosted CD4+ T cell responses before the development of anti-parasite effector CD8+ T cell immunity. Crucially, the absence of CD39 expression on Treg cells significantly bolstered effector parasite-specific CD8+ T cell responses, preventing increased parasite replication in T. cruzi infected mice adoptively transferred with Treg cells. Our work underscores the crucial role of Treg cells in regulating protective anti-parasite immunity and provides evidence that CD39 expression by Treg cells represents a key immunomodulatory mechanism in this infection model.


Assuntos
Antígenos CD , Apirase , Linfócitos T CD8-Positivos , Doença de Chagas , Linfócitos T Reguladores , Trypanosoma cruzi , Animais , Doença de Chagas/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T CD8-Positivos/imunologia , Camundongos , Trypanosoma cruzi/imunologia , Antígenos CD/imunologia , Antígenos CD/metabolismo , Apirase/imunologia , Apirase/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
2.
Oncoimmunology ; 12(1): 2246319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37885970

RESUMO

Conventional CD4+ T (Tconv) lymphocytes play important roles in tumor immunity; however, their contribution to tumor elimination remains poorly understood. Here, we describe a subset of tumor-infiltrating Tconv cells characterized by the expression of CD39. In several mouse cancer models, we observed that CD39+ Tconv cells accumulated in tumors but were absent in lymphoid organs. Compared to tumor CD39- counterparts, CD39+ Tconv cells exhibited a cytotoxic and exhausted signature at the transcriptomic level, confirmed by high protein expression of inhibitory receptors and transcription factors related to the exhaustion. Additionally, CD39+ Tconv cells showed increased production of IFNγ, granzyme B, perforin and CD107a expression, but reduced production of TNF. Around 55% of OVA-specific Tconv from B16-OVA tumor-bearing mice, expressed CD39. In vivo CTLA-4 blockade induced the expansion of tumor CD39+ Tconv cells, which maintained their cytotoxic and exhausted features. In breast cancer patients, CD39+ Tconv cells were found in tumors and in metastatic lymph nodes but were less frequent in adjacent non-tumoral mammary tissue and not detected in non-metastatic lymph nodes and blood. Human tumor CD39+ Tconv cells constituted a heterogeneous cell population with features of exhaustion, high expression of inhibitory receptors and CD107a. We found that high CD4 and ENTPD1 (CD39) gene expression in human tumor tissues correlated with a higher overall survival rate in breast cancer patients. Our results identify CD39 as a biomarker of Tconv cells, with characteristics of both exhaustion and cytotoxic potential, and indicate CD39+ Tconv cells as players within the immune response against tumors.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Camundongos , Animais , Feminino , Linfócitos T Reguladores/metabolismo , Antígeno CTLA-4 , Linfócitos T CD4-Positivos , Neoplasias da Mama/metabolismo
3.
Oncoimmunology ; 12(1): 2261326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808403

RESUMO

IL-17 immune responses in cancer are controversial, with both tumor-promoting and tumor-repressing effects observed. To clarify the role of IL-17 signaling in cancer progression, we used syngeneic tumor models from different tissue origins. We found that deficiencies in host IL-17RA or IL-17A/F expression had varying effects on the in vivo growth of different solid tumors including melanoma, sarcoma, lymphoma, and leukemia. In each tumor type, the absence of IL-17 led to changes in the expression of mediators associated with inflammation and metastasis in the tumor microenvironment. Furthermore, IL-17 signaling deficiencies in the hosts resulted in decreased anti-tumor CD8+ T cell immunity and caused tumor-specific changes in several lymphoid cell populations. Our findings were associated with distinct patterns of IL-17A/F cytokine and receptor subunit expression in the injected tumor cell lines. These patterns affected tumor cell responsiveness to IL-17 and downstream intracellular signaling, leading to divergent effects on cancer progression. Additionally, we identified IL-17RC as a critical determinant of the IL-17-mediated response in tumor cells and a potential biomarker for IL-17 signaling effects in tumor progression. Our study offers insight into the molecular mechanisms underlying IL-17 activities in cancer and lays the groundwork for developing personalized immunotherapies.


Assuntos
Neoplasias , Receptores de Interleucina-17 , Humanos , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Interleucina-17 , Transdução de Sinais , Linfócitos T CD8-Positivos , Inflamação , Neoplasias/genética
4.
Front Immunol ; 14: 1223730, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37809093

RESUMO

This work examines cellular immunity against SARS-CoV-2 in patients from Córdoba, Argentina, during two major waves characterized by different circulating viral variants and different social behavior. Using flow cytometry, we evaluated the main lymphocyte populations of peripheral blood from hospitalized patients with moderate and severe COVID-19 disease. Our results show disturbances in the cellular immune compartment, as previously reported in different cohorts worldwide. We observed an increased frequency of B cells and a significant decrease in the frequency of CD3+ T cells in COVID-19 patients compared to healthy donors (HD). We also found a reduction in Tregs, which was more pronounced in severe patients. During the first wave, the frequency of GZMB, CD107a, CD39, and PD-1-expressing conventional CD4+ T (T conv) cells was significantly higher in moderate and severe patients than in HD. During the second wave, only the GZMB+ T conv cells of moderate and severe patients increased significantly. In addition, these patients showed a decreased frequency in IL-2-producing T conv cells. Interestingly, we identified two subsets of circulating CD8+ T cells with low and high CD8 surface expression in both HD and COVID-19 patients. While the percentages of CD8hi and CD8lo T cells within the CD8+ population in HD are similar, a significant increase was observed in CD8lo T cell frequency in COVID-19 patients. CD8lo T cell populations from HD as well as from SARS-CoV-2 infected patients exhibited lower frequencies of the effector cytokine-producing cells, TNF, IL-2, and IFN-γ, than CD8hi T cells. Interestingly, the frequency of CD8lo T cells increased with disease severity, suggesting that this parameter could be a potential marker for disease progression. Indeed, the CD8hi/CD8lo index helped to significantly improve the patient's clinical stratification and disease outcome prediction. Our data support the addition of, at least, a CD8hi/CD8lo index into the panel of biomarkers commonly used in clinical labs, since its determination may be a useful tool with impact on the therapeutic management of the patients.


Assuntos
COVID-19 , Humanos , Linfócitos T CD8-Positivos , Interleucina-2/metabolismo , SARS-CoV-2 , Subpopulações de Linfócitos , Gravidade do Paciente
5.
bioRxiv ; 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37745571

RESUMO

An imbalance between suppressor and effector immune responses may preclude cure in chronic parasitic diseases. In the case of Trypanosoma cruzi infection, specialized regulatory Foxp3+ T (Treg) cells suppress protective type-1 effector responses. Herein, we investigated the kinetics and underlying mechanisms behind the regulation of protective parasite-specific CD8+ T cell immunity during acute T. cruzi infection. Using the DEREG mouse model, we found that Treg cells play a critical role during the initial stages after T. cruzi infection, subsequently influencing CD8+ T cells. Early Treg cell depletion increased the frequencies of polyfunctional short-lived, effector T cell subsets, without affecting memory precursor cell formation or the expression of activation markers. In addition, Treg cell depletion during early infection minimally affected the antigen-presenting cell response but it boosted CD4+ T cell responses before the development of anti-parasite effector CD8+ T cell responses. Crucially, the absence of CD39 expression on Treg cells significantly bolstered effector parasite-specific CD8+ T cell responses, leading to improved parasite control during T. cruzi infection. Our work underscores the crucial role of Treg cells in regulating protective anti-parasite immunity and provides evidence that CD39 expression by Treg cells represents a key immunomodulatory mechanism in this infection model.

6.
Eur J Immunol ; 53(8): e2250353, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37179252

RESUMO

Unraveling the immune signatures in rheumatoid arthritis (RA) patients receiving various treatment regimens can aid in comprehending the immune mechanisms' role in treatment efficacy and side effects. Given the critical role of cellular immunity in RA pathogenesis, we sought to identify T-cell profiles characterizing RA patients under specific treatments. We compared 75 immunophenotypic and biochemical variables in healthy donors (HD) and RA patients, including those receiving different treatments as well as treatment-free patients. Additionally, we conducted in vitro experiments to evaluate the direct effect of tofacitinib on purified naïve and memory CD4+ and CD8+ T cells. Multivariate analysis revealed that tofacitinib-treated patients segregated from HD at the expense of T-cell activation, differentiation, and effector function-related variables. Additionally, tofacitinib led to an accumulation of peripheral senescent memory CD4+ and CD8+ T cells. In vitro, tofacitinib impaired the activation, proliferation, and effector molecules expression and triggered senescence pathways in T-cell subsets upon TCR-engagement, with the most significant impact on memory CD8+ T cells. Our findings suggest that tofacitinib may activate immunosenescence pathways while simultaneously inhibiting effector functions in T cells, both effects likely contributing to the high clinical success and reported side effects of this JAK inhibitor in RA.


Assuntos
Artrite Reumatoide , Linfócitos T CD8-Positivos , Humanos , Linfócitos T CD4-Positivos , Artrite Reumatoide/tratamento farmacológico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico
7.
Nat Immunol ; 24(6): 941-954, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37095378

RESUMO

The range of vaccines developed against severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) provides a unique opportunity to study immunization across different platforms. In a single-center cohort, we analyzed the humoral and cellular immune compartments following five coronavirus disease 2019 (COVID-19) vaccines spanning three technologies (adenoviral, mRNA and inactivated virus) administered in 16 combinations. For adenoviral and inactivated-virus vaccines, heterologous combinations were generally more immunogenic compared to homologous regimens. The mRNA vaccine as the second dose resulted in the strongest antibody response and induced the highest frequency of spike-binding memory B cells irrespective of the priming vaccine. Priming with the inactivated-virus vaccine increased the SARS-CoV-2-specific T cell response, whereas boosting did not. Distinct immune signatures were elicited by the different vaccine combinations, demonstrating that the immune response is shaped by the type of vaccines applied and the order in which they are delivered. These data provide a framework for improving future vaccine strategies against pathogens and cancer.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Anticorpos Antivirais , COVID-19/prevenção & controle , SARS-CoV-2 , Linfócitos T , Imunogenicidade da Vacina
8.
Front Immunol ; 14: 1111797, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817433

RESUMO

Background: COVID-19 severity has been linked to an increased production of inflammatory mediators called "cytokine storm". Available data is mainly restricted to the first international outbreak and reports highly variable results. This study compares demographic and clinical features of patients with COVID-19 from Córdoba, Argentina, during the first two waves of the pandemic and analyzes association between comorbidities and disease outcome with the "cytokine storm", offering added value to the field. Methods: We investigated serum concentration of thirteen soluble mediators, including cytokines and chemokines, in hospitalized patients with moderate and severe COVID-19, without previous rheumatic and autoimmune diseases, from the central region of Argentina during the first and second infection waves. Samples from healthy controls were also assayed. Clinical and biochemical parameters were collected. Results: Comparison between the two first COVID-19 waves in Argentina highlighted that patients recruited during the second wave were younger and showed less concurrent comorbidities than those from the first outbreak. We also recognized particularities in the signatures of systemic cytokines and chemokines in patients from both infection waves. We determined that concurrent pre-existing comorbidities did not have contribution to serum concentration of systemic cytokines and chemokines in COVID-19 patients. We also identified immunological and biochemical parameters associated to inflammation which can be used as prognostic markers. Thus, IL-6 concentration, C reactive protein level and platelet count allowed to discriminate between death and discharge in patients hospitalized with severe COVID-19 only during the first but not the second wave. Conclusions: Our data provide information that deepens our understanding of COVID-19 pathogenesis linking demographic features of a COVID-19 cohort with cytokines and chemokines systemic concentration, presence of comorbidities and different disease outcomes. Altogether, our findings provide information not only at local level by delineating inflammatory/anti-inflammatory response of patients but also at international level addressing the impact of comorbidities and the infection wave in the variability of cytokine and chemokine production upon SARS-CoV-2 infection.


Assuntos
COVID-19 , Humanos , Citocinas/metabolismo , SARS-CoV-2/metabolismo , Argentina , Quimiocinas , Síndrome da Liberação de Citocina , Pandemias
9.
Front Immunol ; 13: 1000982, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582249

RESUMO

B cells, follicular helper T (Tfh) cells and follicular regulatory T (Tfr) cells are part of a circuit that may play a role in the development or progression of rheumatoid arthritis (RA). With the aim of providing further insight into this topic, here we evaluated the frequency of different subsets of Tfh and Tfr in untreated and long-term treated RA patients from a cohort of Argentina, and their potential association with particular human leukocyte antigen (HLA) class-II variants and disease activity. We observed that the frequency of total Tfh cells as well as of particular Tfh subsets and Tfr cells were increased in seropositive untreated RA patients. Interestingly, when analyzing paired samples, the frequency of Tfh cells was reduced in synovial fluid compared to peripheral blood, while Tfr cells levels were similar in both biological fluids. After treatment, a decrease in the CCR7loPD1hi Tfh subset and an increase in the frequency of Tfr cells was observed in blood. In comparison to healthy donors, seropositive patients with moderate and high disease activity exhibited higher frequency of Tfh cells while seropositive patients with low disease activity presented higher Tfr cell frequency. Finally, we observed that HLA-DRB1*09 presence correlated with higher frequency of Tfh and Tfr cells, while HLA-DRB1*04 was associated with increased Tfr cell frequency. Together, our results increase our knowledge about the dynamics of Tfh and Tfr cell subsets in RA, showing that this is altered after treatment.


Assuntos
Artrite Reumatoide , Linfócitos T Reguladores , Humanos , Células T Auxiliares Foliculares , Cadeias HLA-DRB1/genética , Linfócitos T Auxiliares-Indutores
10.
Front Immunol ; 13: 828734, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651611

RESUMO

During infections with protozoan parasites or some viruses, T cell immunosuppression is generated simultaneously with a high B cell activation. It has been described that, as well as producing antibodies, plasmablasts, the differentiation product of activated B cells, can condition the development of protective immunity in infections. Here, we show that, in T. cruzi infection, all the plasmablasts detected during the acute phase of the infection had higher surface expression of PD-L1 than other mononuclear cells. PD-L1hi plasmablasts were induced in vivo in a BCR-specific manner and required help from Bcl-6+CD4+T cells. PD-L1hi expression was not a characteristic of all antibody-secreting cells since plasma cells found during the chronic phase of infection expressed PD-L1 but at lower levels. PD-L1hi plasmablasts were also present in mice infected with Plasmodium or with lymphocytic choriomeningitis virus, but not in mice with autoimmune disorders or immunized with T cell-dependent antigens. In vitro experiments showed that PD-L1hi plasmablasts suppressed the T cell response, partially via PD-L1. Thus, this study reveals that extrafollicular PD-L1hi plasmablasts, whose peaks of response precede the peak of germinal center response, may have a modulatory function in infections, thus influencing T cell response.


Assuntos
Antígeno B7-H1 , Linfócitos T , Animais , Linfócitos B , Ativação Linfocitária , Camundongos , Plasmócitos
11.
Front Immunol ; 13: 861516, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711415

RESUMO

The hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is a rare autosomal recessive inborn error of the urea cycle caused by mutations in the SLC25A15 gene. Besides the well-known metabolic complications, patients often present intercurrent infections associated with acute hyperammonemia and metabolic decompensation. However, it is currently unknown whether intercurrent infections are associated with immunological alterations besides the known metabolic imbalances. Herein, we describe the case of a 3-years-old girl affected by the HHH syndrome caused by two novel SLC25A15 gene mutations associated with immune phenotypic and functional alterations. She was admitted to the hospital with an episode of recurrent otitis, somnolence, confusion, and lethargy. Laboratory tests revealed severe hyperammonemia, elevated serum levels of liver transaminases, hemostasis alterations, hyperglutaminemia and strikingly increased orotic aciduria. Noteworthy, serum protein electrophoresis showed a reduction in the gamma globulin fraction. Direct sequencing of the SLC25A15 gene revealed two heterozygous non-conservative substitutions in the exon 5: c.649G>A (p.Gly217Arg) and c.706A>G (p.Arg236Gly). In silico analysis indicated that both mutations significantly impair protein structure and function and are consistent with the patient clinical status confirming the diagnosis of HHH syndrome. In addition, the immune analysis revealed reduced levels of serum IgG and striking phenotypic and functional alterations in the T and B cell immune compartments. Our study has identified two non-previously described mutations in the SLC25A15 gene underlying the HHH syndrome. Moreover, we are reporting for the first time functional and phenotypic immunologic alterations in this rare inborn error of metabolism that would render the patient immunocompromised and might be related to the high frequency of intercurrent infections observed in patients bearing urea cycle disorders. Our results point out the importance of a comprehensive analysis to gain further insights into the underlying pathophysiology of the disease that would allow better patient care and quality of life.


Assuntos
Hiperamonemia , Distúrbios Congênitos do Ciclo da Ureia , Sistemas de Transporte de Aminoácidos Básicos/genética , Pré-Escolar , Feminino , Humanos , Hiperamonemia/complicações , Hiperamonemia/diagnóstico , Proteínas de Transporte da Membrana Mitocondrial , Ornitina/deficiência , Qualidade de Vida , Distúrbios Congênitos do Ciclo da Ureia/complicações , Distúrbios Congênitos do Ciclo da Ureia/diagnóstico , Distúrbios Congênitos do Ciclo da Ureia/genética
12.
FEBS Lett ; 596(13): 1700-1719, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35490377

RESUMO

Trophoblast cell differentiation is of paramount importance for successful pregnancy. Krüppel-like factor 6 (KLF6), a transcription factor with diverse roles in cell physiology and tumor biology, is required for trophoblast differentiation through the syncytial pathway. Herein, we demonstrate that extravillous trophoblast (EVT) cell migration and mesenchymal phenotype are increased upon KLF6 downregulation or the expression of a deletion mutant lacking its transcriptional regulatory domain (KΔac). Raman spectroscopy revealed molecular modifications compatible with increased differentiation in cells stably expressing the KΔac mutant. Moreover, abnormally invasive placenta showed lower KLF6 immunostaining compared with the normal placenta. Thus, impaired KLF6 expression or function stimulates EVT migration and differentiation in vitro and may contribute to the physiopathology of the abnormally invasive placenta.


Assuntos
Placenta , Trofoblastos , Diferenciação Celular/genética , Movimento Celular/genética , Feminino , Regulação da Expressão Gênica , Humanos , Fator 6 Semelhante a Kruppel/genética , Fator 6 Semelhante a Kruppel/metabolismo , Placenta/metabolismo , Gravidez , Trofoblastos/metabolismo
13.
Front Immunol ; 12: 713132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34386013

RESUMO

Senescent T cells have been described during aging, chronic infections, and cancer; however, a comprehensive study of the phenotype, function, and transcriptional program of this T cell population in breast cancer (BC) patients is missing. Compared to healthy donors (HDs), BC patients exhibit an accumulation of KLRG-1+CD57+ CD4+ and CD8+ T cells in peripheral blood. These T cells infiltrate tumors and tumor-draining lymph nodes. KLRG-1+CD57+ CD4+ and CD8+ T cells from BC patients and HDs exhibit features of senescence, and despite their inhibitory receptor expression, they produce more effector cytokines and exhibit higher expression of Perforin, Granzyme B, and CD107a than non-senescent subsets. When compared to blood counterparts, tumor-infiltrating senescent CD4+ T cells show similar surface phenotype but reduced cytokine production. Transcriptional profiling of senescent CD4+ T cells from the peripheral blood of BC patients reveals enrichment in genes associated with NK or CD8+-mediated cytotoxicity, TCR-mediated stimulation, and cell exhaustion compared to non-senescent T cells. Comparison of the transcriptional profile of senescent CD4+ T cells from peripheral blood of BC patients with those of HDs highlighted marked similarities but also relevant differences. Senescent CD4+ T cells from BC patients show enrichment in T-cell signaling, processes involved in DNA replication, p53 pathways, oncogene-induced senescence, among others compared to their counterparts in HDs. High gene expression of CD4, KLRG-1, and B3GAT1 (CD57), which correlates with increased overall survival for BC patients, underscores the usefulness of the evaluation of the frequency of senescent CD4+ T cells as a biomarker in the follow-up of patients.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Senescência Celular , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias da Mama/etiologia , Antígenos CD57/metabolismo , Estudos de Casos e Controles , Senescência Celular/genética , Senescência Celular/imunologia , Citotoxicidade Imunológica , Feminino , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Lectinas Tipo C/metabolismo , Contagem de Linfócitos , Linfócitos do Interstício Tumoral/patologia , Receptores Imunológicos/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia
14.
Rev. argent. reumatolg. (En línea) ; 31(3): 40-50, set. 2020. ilus, tab
Artigo em Espanhol | LILACS, BINACIS | ID: biblio-1149675

RESUMO

Introducción: La artritis reumatoidea se caracteriza por inflamación de la membrana sinovial debido al infiltrado de células inmunitarias que secretan citocinas relacionadas a perfil Th17 como IL-22 e IL-6. La dinámica de estas citocinas durante el tratamiento permanece incomprendida. El objetivo fue evaluar los niveles séricos y en líquido sinovial (LS) de IL-22 e IL-6, correlacionarlos con diferentes parámetros bioquímicos y clínicos y medir sus cambios post-tratamiento. Material y métodos: Se estudiaron 77 pacientes con AR y 30 controles. A 30 pacientes se los evaluó nuevamente luego de 3 meses de tratamiento y a 12 se les extrajo LS. Se midió VSG, PCR, FR, anti-CCPhs, IL-22 e IL-6. Se evaluó la actividad con DAS28 y respuesta al tratamiento con criterios EULAR. Resultados: IL-22 e IL-6 fueron similares entre pacientes y controles. Sus niveles disminuyeron luego del tratamiento, principalmente en pacientes respondedores. IL-22 fue menor e IL-6 mayor en LS que en sangre. IL-6 correlacionó positivamente con PCR y anti-CCPhs. Los niveles de VSG, PCR y DAS28 fueron mayores en pacientes con valores dosables de IL-6 que en no dosables. Conclusión: En pacientes con valores basales dosables de IL-22 e IL-6, los niveles de estas citocinas podrían utilizarse como marcador adicional de respuesta al tratamiento.


Introduction: Rheumatoid arthritis is characterized by synovium inflammation due to the infiltration of immune cells that secrete Th17 cytokines like IL-22 and IL-6. The dynamics of these cytokines during the treatment remain unknown. The aim of this study was to evaluate the levels of IL-22 and IL-6 serum and synovial fluid (SF) in correlation with different biochemical and clinical parameters and treatment-associated changes. Material and methods: Seventy-seven RA patients and 30 controls were recruited. Thirty patients were evaluated after 3 months of treatment and SF was collected of 12 patients. ESR, CRP, RF, anti-CCP hs, IL-22 e IL-6 were measured. DAS28 was used to assess disease activity and response to treatment followed EULAR criteria. Results: There were not differences in serum IL-22 and IL-6 levels between patients and controls. Cytokine levels decreased after treatment, mainly in responder patients. IL-22 was decreased and IL-6 was increased in SF compared to serum. IL-6 correlated positively with CRP and anti-CCPhs. ESR, CRP and DAS28 were increased in patients with detectable IL-6 compared to those with undetectable IL-6. Conclusion: In patients with detectable serum IL-22 and IL-6 levels before treatment initiation, follow-up of cytokine levels could be an useful additional tool to evaluate treatment response.


Assuntos
Artrite Reumatoide , Terapêutica , Interleucinas , Interleucina-6 , Inflamação
15.
mBio ; 11(3)2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398312

RESUMO

Treatment with anti-CD20, used in many diseases in which B cells play a pathogenic role, has been associated with susceptibility to intracellular infections. Here, we studied the effect of anti-CD20 injection on CD8+ T cell immunity using an experimental model of Trypanosoma cruzi infection, in which CD8+ T cells play a pivotal role. C57BL/6 mice were treated with anti-CD20 for B cell depletion prior to T. cruzi infection. Infected anti-CD20-treated mice exhibited a CD8+ T cell response with a conserved expansion phase followed by an early contraction, resulting in a strong reduction in total and parasite-specific CD8+ T cell numbers at 20 days postinfection. Anti-CD20 injection increased the frequency of apoptotic CD8+ T cells, decreased the number of effector and memory CD8+ T cells, and reduced the frequency of proliferating and cytokine-producing CD8+ T cells. Accordingly, infected anti-CD20-treated mice presented lower cytotoxicity of T. cruzi peptide-pulsed target cells in vivo All of these alterations in CD8+ T cell immunity were associated with increased tissue parasitism. Anti-CD20 injection also dampened the CD8+ T cell response, when this had already been generated, indicating that B cells were involved in the maintenance rather than the induction of CD8+ T cell immunity. Anti-CD20 injection also resulted in a marked reduction in the frequency of interleukin-6 (IL-6)- and IL-17A-producing cells, and recombinant IL-17A (rIL-17A) injection partially restored the CD8+ T cell response in infected anti-CD20-treated mice. Thus, anti-CD20 reduced CD8+ T cell immunity, and IL-17A is a candidate for rescuing deficient responses either directly or indirectly.IMPORTANCE Monoclonal antibody targeting the CD20 antigen on B cells is used to treat the majority of non-Hodgkin lymphoma patients and some autoimmune disorders. This therapy generates adverse effects, notably opportunistic infections and activation of viruses from latency. Here, using the infection murine model with the intracellular parasite Trypanosoma cruzi, we report that anti-CD20 treatment affects not only B cell responses but also CD8+ T cell responses, representing the most important immune effectors involved in control of intracellular pathogens. Anti-CD20 treatment, directly or indirectly, affects cytotoxic T cell number and function, and this deficient response was rescued by the cytokine IL-17A. The identification of IL-17A as the cytokine capable of reversing the poor response of CD8+ T cells provides information about a potential therapeutic treatment aimed at enhancing defective immunity induced by B cell depletion.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Antígenos CD20/imunologia , Linfócitos T CD8-Positivos/imunologia , Doença de Chagas/imunologia , Interleucina-17/imunologia , Animais , Anticorpos Monoclonais/imunologia , Doença de Chagas/prevenção & controle , Feminino , Injeções Intraperitoneais , Interleucina-17/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Trypanosoma cruzi
16.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165706, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31987839

RESUMO

Host resistance during infection with Trypanosoma cruzi, and other protozoans, is dependent on a balanced immune response. Robust immunity against these pathogens requires of the concerted action of many innate and adaptive cell populations including macrophages, neutrophils, dendritic cells, CD4+, and CD8+ T cells and B cells among others. Indeed, during most protozoan infections only a balanced production of inflammatory (TH1) and anti-inflammatory (TH2/regulatory) cytokines will allow the control of parasite spreading without compromising host tissue integrity. The description of TH17 cells, a novel effector helper T cell lineage that produced IL-17 as signature cytokine, prompted the revision of our knowledge about the mechanisms that mediate protection and immunopathology during protozoan infections. In this manuscript we discuss the general features of IL-17 mediated immune responses as well as the cellular sources, effector mechanisms and overall role of IL-17 in the immune response to T. cruzi and other protozoan infections.


Assuntos
Doença de Chagas/imunologia , Interações Hospedeiro-Parasita/imunologia , Imunidade Celular , Interleucina-17/metabolismo , Trypanosoma cruzi/imunologia , Animais , Antígenos de Protozoários/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Doença de Chagas/parasitologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Humanos , Imunidade Inata , Interleucina-17/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
17.
Trends Parasitol ; 35(11): 899-917, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31607632

RESUMO

The protozoan Trypanosoma cruzi is the causative agent of Chagas' disease, endemic in Latin America but present worldwide. Research efforts have focused on the examination of immune mechanisms that mediate host protection as well as immunopathology during this parasitic infection. The study of CD8+ T cell immunity emerges as a key aspect given the critical importance of parasite-specific CD8+ T cells for host resistance throughout the infection. In recent years, new research has shed light on novel pathways that modulate the induction, maintenance, and regulation of CD8+ T cell responses to T. cruzi. This new knowledge is setting the ground for future vaccines and/or immunotherapies. Herein, we critically review and analyze the latest results published in the field.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Doença de Chagas/imunologia , Interações Hospedeiro-Parasita/imunologia , Trypanosoma cruzi/imunologia , Doença de Chagas/parasitologia , Doença de Chagas/prevenção & controle , Humanos , Pesquisa/tendências
18.
Front Immunol ; 10: 356, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30881362

RESUMO

A significant proportion of individuals develop chronic, persistent and recurrent genital tract infections with Chlamydia trachomatis, which has been attributed to the numerous strategies that the bacterium uses to subvert host immune responses. Animal chlamydia models have demonstrated that protective immune response is mediated by CD4+ Th1 cytokine responses. Herein, we demonstrate that early after infecting the male genital tract, C. muridarum triggers the production of IL-10 by splenic and lymph node cells. In addition, C. muridarum triggers IL-6 and TNFα secretion. Data obtained from in vitro and in vivo experiments revealed B cells as the major IL-10 contributors. Indeed, purified B cells produced high amounts of IL-10 and also exhibited enhanced expression of inhibitory molecules such as CD39, PD-L1 and PD1 after C. muridarum stimulation. In vitro experiments performed with sorted cell subsets revealed that Marginal Zone B cells were the main IL-10 producers. In vitro and in vivo studies using TLR-deficient mice indicated that TLR4 signaling pathway was essential for IL-10 production. In addition, in vivo treatments to neutralize IL-10 or deplete B cells indicated that IL-10 and B cells played a significant role in delaying bacterial clearance ability. Moreover, the latter was confirmed by adoptive cell transfer experiments in which the absence of IL-10-producing B cells conferred the host a greater capability to induce Th1 responses and clear the infection. Interestingly, NOD mice, which were the least efficient in clearing the infection, presented much more Marginal Zone B counts and also enhanced TLR4 expression on Marginal Zone B cells when compared to B6 and BALB/c mice. Besides, treatment with antibodies that selectively deplete Marginal Zone B cells rendered mice more capable of inducing enhanced IFNγ responses and clearing the infection. Our findings suggest that B cells play a detrimental role in C. muridarum infection and that activation by innate receptors like TLR4 and IL-10 production by these cells could be used by Chlamydia spp. as a strategy to modulate the immune response establishing chronic infections in susceptible hosts.


Assuntos
Linfócitos B/imunologia , Infecções por Chlamydia/imunologia , Chlamydia muridarum/genética , Genitália Masculina/microbiologia , Interleucina-10/metabolismo , Infecções do Sistema Genital/microbiologia , Linfócitos T/imunologia , Transferência Adotiva/métodos , Animais , Infecções por Chlamydia/microbiologia , Técnicas de Inativação de Genes , Interleucina-10/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Infecções do Sistema Genital/imunologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
19.
PLoS Pathog ; 15(1): e1007456, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30608984

RESUMO

Innate CD8+ T cells express a memory-like phenotype and demonstrate a strong cytotoxic capacity that is critical during the early phase of the host response to certain bacterial and viral infections. These cells arise in the thymus and depend on IL-4 and IL-15 for their development. Even though innate CD8+ T cells exist in the thymus of WT mice in low numbers, they are highly enriched in KO mice that lack certain kinases, leading to an increase in IL-4 production by thymic NKT cells. Our work describes that in C57BL/6 WT mice undergoing a Th1 biased infectious disease, the thymus experiences an enrichment of single positive CD8 (SP8) thymocytes that share all the established phenotypical and functional characteristics of innate CD8+ T cells. Moreover, through in vivo experiments, we demonstrate a significant increase in survival and a lower parasitemia in mice adoptively transferred with SP8 thymocytes from OT I-T. cruzi-infected mice, demonstrating that innate CD8+ thymocytes are able to protect against a lethal T. cruzi infection in an Ag-independent manner. Interestingly, we obtained similar results when using thymocytes from systemic IL-12 + IL-18-treated mice. This data indicates that cytokines triggered during the acute stage of a Th1 infectious process induce thymic production of IL-4 along with IL-15 expression resulting in an adequate niche for development of innate CD8+ T cells as early as the double positive (DP) stage. Our data demonstrate that the thymus can sense systemic inflammatory situations and alter its conventional CD8 developmental pathway when a rapid innate immune response is required to control different types of pathogens.


Assuntos
Interleucina-15/metabolismo , Interleucina-4/metabolismo , Timo/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/imunologia , Citocinas/metabolismo , Feminino , Imunidade Inata/genética , Interleucina-12/metabolismo , Interleucina-15/genética , Interleucina-18/metabolismo , Interleucina-4/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/imunologia , Transdução de Sinais , Células Th1/imunologia , Timócitos/metabolismo , Timo/metabolismo , Timo/patologia
20.
Front Immunol ; 9: 2555, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30455700

RESUMO

While it is now acknowledged that CD4+ T cells expressing CD25 and Foxp3 (Treg cells) regulate immune responses and, consequently, influence the pathogenesis of infectious diseases, the regulatory response mediated by Treg cells upon infection by Trypanosoma cruzi was still poorly characterized. In order to understand the role of Treg cells during infection by this protozoan parasite, we determined in time and space the magnitude of the regulatory response and the phenotypic, functional and transcriptional features of the Treg cell population in infected mice. Contrary to the accumulation of Treg cells reported in most chronic infections in mice and humans, experimental T. cruzi infection was characterized by sustained numbers but decreased relative frequency of Treg cells. The reduction in Treg cell frequency resulted from a massive accumulation of effector immune cells, and inversely correlated with the magnitude of the effector immune response as well as with emergence of acute immunopathology. In order to understand the causes underlying the marked reduction in Treg cell frequency, we evaluated the dynamics of the Treg cell population and found a low proliferation rate and limited accrual of peripheral Treg cells during infection. We also observed that Treg cells became activated and acquired a phenotypic and transcriptional profile consistent with suppression of type 1 inflammatory responses. To assess the biological relevance of the relative reduction in Treg cells frequency observed during T. cruzi infection, we transferred in vitro differentiated Treg cells at early moments, when the deregulation of the ratio between regulatory and conventional T cells becomes significant. Intravenous injection of Treg cells dampened parasite-specific CD8+ T cell immunity and affected parasite control in blood and tissues. Altogether, our results show that limited Treg cell response during the acute phase of T. cruzi infection enables the emergence of protective anti-parasite CD8+ T cell immunity and critically influences host resistance.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Doença de Chagas/imunologia , Linfócitos T Reguladores/imunologia , Trypanosoma cruzi/imunologia , Transferência Adotiva , Animais , Proliferação de Células , Ativação Linfocitária/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...