Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239890

RESUMO

Targeting therapy is a concept that has gained significant importance in recent years, especially in oncology. The severe dose-limiting side effects of chemotherapy necessitate the development of novel, efficient and tolerable therapy approaches. In this regard, the prostate specific membrane antigene (PSMA) has been well established as a molecular target for diagnosis of, as well as therapy for, prostate cancer. Although most PSMA-targeting ligands are radiopharmaceuticals used in imaging or radioligand therapy, this article evaluates a PSMA-targeting small molecule-drug conjugate, and, thus, addresses a hitherto little-explored field. PSMA binding affinity and cytotoxicity were determined in vitro using cell-based assays. Enzyme-specific cleavage of the active drug was quantified via an enzyme-based assay. Efficacy and tolerability in vivo were assessed using an LNCaP xenograft model. Histopathological characterization of the tumor in terms of apoptotic status and proliferation rate was carried out using caspase-3 and Ki67 staining. The binding affinity of the Monomethyl auristatin E (MMAE) conjugate was moderate, compared to the drug-free PSMA ligand. Cytotoxicity in vitro was in the nanomolar range. Both binding and cytotoxicity were found to be PSMA-specific. Additionally, complete MMAE release could be reached after incubation with cathepsin B. In vivo, the MMAE conjugate displayed good tolerability and dose-dependent inhibition of tumor growth. Immunohistochemical and histological studies revealed the antitumor effect of MMAE.VC.SA.617, resulting in the inhibition of proliferation and the enhancement of apoptosis. The developed MMAE conjugate showed good properties in vitro, as well as in vivo, and should, therefore, be considered a promising candidate for a translational approach.


Assuntos
Imunoconjugados , Masculino , Humanos , Preparações Farmacêuticas , Imunoconjugados/uso terapêutico , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Molecules ; 26(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34770742

RESUMO

(1) Background: Prostate-specific membrane antigen (PSMA) has been extensively studied in the last decade. It became a promising biological target in the diagnosis and therapy of PSMA-expressing cancer diseases. Although there are several radiolabeled PSMA inhibitors available, the search for new compounds with improved pharmacokinetic properties and simplified synthesis is still ongoing. In this study, we developed PSMA ligands with two different hybrid chelators and a modified linker. Both compounds have displayed a promising pharmacokinetic profile. (2) Methods: DATA5m.SA.KuE and AAZTA5.SA.KuE were synthesized. DATA5m.SA.KuE was labeled with gallium-68 and radiochemical yields of various amounts of precursor at different temperatures were determined. Complex stability in phosphate-buffered saline (PBS) and human serum (HS) was examined at 37 °C. Binding affinity and internalization ratio were determined in in vitro assays using PSMA-positive LNCaP cells. Tumor accumulation and biodistribution were evaluated in vivo and ex vivo using an LNCaP Balb/c nude mouse model. All experiments were conducted with PSMA-11 as reference. (3) Results: DATA5m.SA.KuE was synthesized successfully. AAZTA5.SA.KuE was synthesized and labeled according to the literature. Radiolabeling of DATA5m.SA.KuE with gallium-68 was performed in ammonium acetate buffer (1 M, pH 5.5). High radiochemical yields (>98%) were obtained with 5 nmol at 70 °C, 15 nmol at 50 °C, and 60 nmol (50 µg) at room temperature. [68Ga]Ga-DATA5m.SA.KuE was stable in human serum as well as in PBS after 120 min. PSMA binding affinities of AAZTA5.SA.KuE and DATA5m.SA.KuE were in the nanomolar range. PSMA-specific internalization ratio was comparable to PSMA-11. In vivo and ex vivo studies of [177Lu]Lu-AAZTA5.SA.KuE, [44Sc]Sc-AAZTA5.SA.KuE and [68Ga]Ga-DATA5m.SA.KuE displayed specific accumulation in the tumor along with fast clearance and reduced off-target uptake. (4) Conclusions: Both KuE-conjugates showed promising properties especially in vivo allowing for translational theranostic use.


Assuntos
Antígenos de Superfície/química , Quelantes/química , Glutamato Carboxipeptidase II/química , Compostos Radiofarmacêuticos/química , Animais , Quelantes/síntese química , Técnicas de Química Sintética , Diagnóstico por Imagem/métodos , Modelos Animais de Doenças , Glutamato Carboxipeptidase II/antagonistas & inibidores , Xenoenxertos , Humanos , Marcação por Isótopo , Cinética , Camundongos , Estrutura Molecular , Neoplasias/diagnóstico por imagem , Neoplasias/etiologia , Ligação Proteica , Compostos Radiofarmacêuticos/síntese química , Pesquisa Translacional Biomédica
3.
Bioconjug Chem ; 32(7): 1223-1231, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34170116

RESUMO

Targeting vectors bound to a chelator represent a significant fraction of radiopharmaceuticals used nowadays for diagnostic and therapeutic purposes in nuclear medicine. The use of squaramides as coupling units for chelator and targeting vector helps to circumvent the disadvantages of several common coupling methods. This review gives an overview of the use of squaric acid diesters (SADE) as linking agents. It focuses on the conjugation of cyclic chelators, e.g., DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid), as well as hybrid chelators like AAZTA5 (6-pentanoic acid-6-amino-1,4-diazepine tetracetic acid) or DATA5m (6-pentanoic acid-6-amino-1,4-diazapine-triacetate) to different targeting vectors, e.g., prostate-specific membrane antigen inhibitors (KuE; PSMAi), fibroblast activation protein inhibitors (FAPi), and monoclonal antibodies (mAbs). An overview of the synthesis, radiolabeling, and in vitro and in vivo behavior of the described structures is given. The unique properties of SADE enable a fast and simple conjugation of chelators to biomolecules, peptides, and small molecules under mild conditions. Furthermore, SA-containing conjugates could not only display similar in vitro characteristics in terms of binding affinity when compared to reference compounds, but may even induce beneficial effects on the pharmacokinetic properties of these radiopharmaceuticals.


Assuntos
Ciclobutanos/química , Neoplasias/diagnóstico por imagem , Compostos Radiofarmacêuticos/química , Ciclobutanos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/uso terapêutico
4.
Bioconjug Chem ; 32(7): 1276-1289, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32786371

RESUMO

Calcium minerals such as hydroxyapatite (HAp) can be detected noninvasively in vivo using nuclear imaging agents such as [18F]NaF (available from cyclotrons), for positron emission tomography (PET) and 99mTc-radiolabeled bisphosphonates (BP; available from 99mTc generators for single photon emission computed tomography (SPECT) or scintigraphy). These two types of imaging agents allow detection of bone metastases (based on the presence of HAp) and vascular calcification lesions (that contain HAp and other calcium minerals). With the aim of developing a cyclotron-independent PET radiotracer for these lesions, with broad calcium mineral affinity and simple one-step radiolabeling, we developed [68Ga]Ga-THP-Pam. Radiolabeling with 68Ga is achieved using a mild single-step kit (5 min, room temperature, pH 7) to high radiochemical yield and purity (>95%). NMR studies demonstrate that Ga binds via the THP chelator, leaving the BP free to bind to its biological target. [68Ga]Ga-THP-Pam shows high stability in human serum. The calcium mineral binding of [68Ga]Ga-THP-Pam was compared in vitro to two other 68Ga-BPs which have been successfully evaluated in humans, [68Ga]Ga-NO2APBP and [68Ga]Ga-BPAMD, as well as [18F]NaF. Interestingly, we found that all 68Ga-BPs have a high affinity for a broad range of calcium minerals implicated in vascular calcification disease, while [18F]NaF is selective for HAp. Using healthy young mice as a model of metabolically active growing calcium mineral in vivo, we compared the pharmacokinetics and biodistribution of [68Ga]Ga-THP-Pam with [18F]NaF as well as [68Ga]NO2APBP. These studies revealed that [68Ga]Ga-THP-Pam has high in vivo affinity for bone tissue (high bone/muscle and bone/blood ratios) and fast blood clearance (t1/2 < 10 min) comparable to both [68Ga]NO2APBP and [18F]NaF. Overall, [68Ga]Ga-THP-Pam shows high potential for clinical translation as a cyclotron-independent calcium mineral PET radiotracer, with simple and efficient radiochemistry that can be easily implemented in any radiopharmacy.


Assuntos
Cálcio/química , Difosfonatos/química , Radioisótopos de Gálio/química , Tomografia por Emissão de Pósitrons/métodos , Animais , Quelantes/química , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...