Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732024

RESUMO

Molecular physics plays a pivotal role in various fields, including medicine, pharmaceuticals, and broader industrial applications. This study aims to enhance the methods for producing specific optically active materials with distinct spectroscopic properties at the molecular level, which are crucial for these sectors, while prioritizing human safety in both production and application. Forensic science, a significant socio-economic field, often employs hazardous substances in analyzing friction ridges on porous surfaces, posing safety concerns. In response, we formulated novel, non-toxic procedures for examining paper evidence, particularly thermal papers. Our laboratory model utilizes a polyvinyl alcohol polymer as a rigid matrix to emulate the thermal paper's environment, enabling precise control over the spectroscopic characteristics of 1,8-diazafluoro-9-one (DFO). We identified and analyzed the cyclodimer 1,8-diazafluoren-9-one (DAK DFO), which is a non-toxic and biocompatible alternative for revealing forensic marks. The reagents used to preserve fingerprints were optimized for their effectiveness and stability. Using stationary absorption and emission spectroscopy, along with time-resolved emission studies, we verified the spectroscopic attributes of the new structures under deliberate aggregation conditions. Raman spectroscopy and quantum mechanical computations substantiated the cyclodimer's configuration. The investigation provides robust scientific endorsement for the novel compound and its structural diversity, influenced by the solvatochromic sensitivity of the DFO precursor. Our approach to monitoring aggregation processes signifies a substantial shift in synthetic research paradigms, leveraging simple chemistry to yield an innovative contribution to forensic science methodologies.


Assuntos
Análise Espectral Raman , Análise Espectral Raman/métodos , Humanos , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes/química , Ciências Forenses/métodos
2.
J Forensic Sci ; 69(2): 437-447, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38095210

RESUMO

The detection of potentially harmful substances presents a multifaceted challenge. On one hand, it can directly save lives, on the other, it can significantly aid and enhance police work, thereby increasing the effectiveness of investigations. The research conducted in this study primarily aims to identify paracetamol in fingerprints, considering situations involving direct contact of a person with paracetamol either chronically or in a single dose. The identification procedure presented, utilizing Raman spectroscopy, aims to rapidly detect the xenobiotic following ingestion by an individual, which involves touching the tablet with their fingers-this can be termed as touch evidence in forensic science investigations. Additionally, the authors focus on assessing the impact of additives present in drugs containing paracetamol as the main active ingredient. The screening results obtained will enable us to analyze the composition of drugs in terms of potentially toxic substances, and their influence on the physicochemical activity of the active substance. We successfully identified the paracetamol molecule using a noninvasive forensic trace detection method. Samples in the form of common drugs containing 500 mg of paracetamol were studied. Throughout the study, comprehensive validation of the method was ensured through the utilization of a statistical model, which excluded sensitivity to the presence of other substances, whether additives or from the external environment. The proposed approach to trace the content of substances in fingerprint using Raman scattering analysis provides a useful starting point to enhance current analytical methods not only in forensic science but also in toxicology.


Assuntos
Acetaminofen , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Fricção , Ciências Forenses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...