Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Altern Complement Med ; 12(5): 429-35, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16813506

RESUMO

INTRODUCTION: Spirulina (Spirulina platensis) is a dietary supplement valued for its immune-enhancing properties. We previously reported that the immunostimulatory effect of spirulina can be traced to a high-molecular- weight polysaccharide fraction. This fraction, labeled Immolina, activates nuclear factor kappa-B in human monocytic THP-1 cells and increases expression of proinflammatory cytokines. OBJECTIVE: To characterize further the immunostimulatory effects of Immolina on THP-1 cells, we evaluated its effect on genes encoding the chemokines interleukin (IL)-8, MCP-1, MIP-1alpha, MIP-1beta, IP-10, the cytokines tumor necrosis factor (TNF)-alpha, IL-1beta, and the enzyme cyclo-oxygenase-2 (COX-2). METHODS: THP-1 cells were exposed to concentrations of Immolina ranging from 1 ng/mL to 100 microg/mL and changes in gene expression were assessed by reverse transcriptase-polymerase chain reaction (RT-PCR). For comparison, THP-1 cells were activated with 1 ng/mL of TNF-alpha, 10 ng/mL of IL-1beta, or 10 ng/mL of lipopolysaccharide using the same assay conditions. To assess the response of THP-1 cells to Immolina at the protein level, we probed culture supernatants using a cytokine array immunoblot assay. RESULTS: RT-PCR analysis revealed that Immolina dose-dependently increased the expression of all 5 chemokines tested as well as the expression of TNF-alpha, IL-1beta, and COX-2. The cytokine array immunoblot assay revealed an increase in the chemokines IL-8 and MIP-1beta. Thymidine uptake experiments verified that Immolina did not affect the viability and growth rate of THP-1 cells. CONCLUSIONS: The results of the experiments demonstrate that Immolina activates THP-1 cells in a manner that is consistent with the recruitment of diverse populations of leukocytes in response to inflammatory and infectious signals.


Assuntos
Quimiocinas/metabolismo , Monócitos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Receptores de Quimiocinas/efeitos dos fármacos , Relação Dose-Resposta a Droga , Mediadores da Inflamação/farmacologia , Monócitos/metabolismo , Receptores de Quimiocinas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Spirulina , Células Tumorais Cultivadas
2.
J Med Food ; 8(2): 125-32, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16117603

RESUMO

The anti-inflammatory properties of ginger have been known and valued for centuries. During the past 25 years, many laboratories have provided scientific support for the long-held belief that ginger contains constituents with antiinflammatory properties. The original discovery of ginger's inhibitory effects on prostaglandin biosynthesis in the early 1970s has been repeatedly confirmed. This discovery identified ginger as an herbal medicinal product that shares pharmacological properties with non-steroidal anti-inflammatory drugs. Ginger suppresses prostaglandin synthesis through inhibition of cyclooxygenase-1 and cyclooxygenase-2. An important extension of this early work was the observation that ginger also suppresses leukotriene biosynthesis by inhibiting 5-lipoxygenase. This pharmacological property distinguishes ginger from nonsteroidal anti-inflammatory drugs. This discovery preceded the observation that dual inhibitors of cyclooxygenase and 5-lipoxygenase may have a better therapeutic profile and have fewer side effects than non-steroidal anti-inflammatory drugs. The characterization of the pharmacological properties of ginger entered a new phase with the discovery that a ginger extract (EV.EXT.77) derived from Zingiber officinale (family Zingiberaceae) and Alpina galanga (family Zingiberaceae) inhibits the induction of several genes involved in the inflammatory response. These include genes encoding cytokines, chemokines, and the inducible enzyme cyclooxygenase-2. This discovery provided the first evidence that ginger modulates biochemical pathways activated in chronic inflammation. Identification of the molecular targets of individual ginger constituents provides an opportunity to optimize and standardize ginger products with respect to their effects on specific biomarkers of inflammation. Such preparations will be useful for studies in experimental animals and humans.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Extratos Vegetais/farmacologia , Antagonistas de Prostaglandina/farmacologia , Zingiber officinale/química , Alpinia/química , Anti-Inflamatórios não Esteroides/uso terapêutico , Artrite/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Citocinas/biossíntese , Citocinas/efeitos dos fármacos , Humanos , Inibidores de Lipoxigenase , Monócitos/efeitos dos fármacos , Monócitos/imunologia , NF-kappa B/antagonistas & inibidores , Dor/tratamento farmacológico , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Plantas Medicinais , Receptores de Droga/agonistas , Doenças Reumáticas/tratamento farmacológico
3.
J Comp Neurol ; 478(2): 111-25, 2004 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-15349973

RESUMO

Corticotropin-releasing factor receptor type 1, CRF1, plays a prominent role in the hypothalamic-pituitary-adrenal (HPA) axis and is implicated in the autonomic and behavioral responses to stress. Dysregulation of the CRF system may underlie the pathophysiology of several disorders, including depression and anxiety. The distribution of CRF1 mRNA and CRF1 specific ligand binding has been reported by multiple groups in rodents using in situ hybridization and receptor autoradiography, respectively. More recently, somewhat conflicting rodent anti-CRF1 immunohistochemical studies were reported. In this study we report the generation of an antihuman CRF1 antiserum and provide the first immunohistochemical description of CRF1 distribution in a primate brain, that of the rhesus monkey. The specificity of anti-CRF-R1 antiserum R221 was demonstrated using transfected hCRF1-expressing HEK 293 cells and rhesus monkey pituitary. CRF1-immunoreactive neurons were widespread in the rhesus brain. CRF1 staining was associated with neuronal cell bodies and dendrites and was primarily intracellular, suggesting a high rate of receptor turnover or receptor sequestration. Anti-CRF1 immunoreactivity was most abundant in pituitary, cerebellum, and in portions of brain stem associated with sensorimotor function. CRF1 staining was also observed in cerebral cortex, basal forebrain, portions of the basal ganglia, and thalamus. Staining was relatively low in prefrontal cortex and in limbic areas, which may reflect masking of the N-terminal epitope. The distribution of CRF1 immunoreactivity is suggestive of roles in attentional processing as well as the processing of motor and sensory information.


Assuntos
Anticorpos/metabolismo , Especificidade de Anticorpos , Encéfalo/metabolismo , Neurônios/metabolismo , Receptores de Hormônio Liberador da Corticotropina/biossíntese , Animais , Especificidade de Anticorpos/imunologia , Western Blotting , Linhagem Celular , Hormônio Liberador da Corticotropina/imunologia , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Macaca mulatta , RNA Mensageiro/análise , Transfecção
4.
J Altern Complement Med ; 10(6): 1009-13, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15673995

RESUMO

INTRODUCTION: Neuritic plaques, a neuropathologic hallmark of Alzheimer's disease, are extracellular deposits of beta-amyloid peptides (Abeta). In the central nervous system neuritic plaques are surrounded by activated microglial cells expressing proinflammatory cytokines, chemokines, and neurotoxic mediators. Long-term activation of microglial cells is suspected to contribute to the neuron loss in Alzheimer's disease. OBJECTIVE: This study was conducted to determine whether a ginger (Zingiber officinale and Alpinia galanga) extract (GE) can dampen the activation of THP-1 cells by lipopolysaccharide, proinflammatory cytokines, and fibrillar amyloid peptide Abeta(1-42), a major component of neuritic plaques. METHODS: THP-1 cells, a human monocytic cell line with properties similar to human microglial cells, were incubated with GE or control medium alone for 1 hour, and then with reincubated lipopolysaccharide (LPS), tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta) or fibrillar Abeta(1-42) for an additional hour. The extent of THP-1 cell activation was determined by measuring mRNA levels of TNF-alpha and IL-1beta, cyclooxygenase-2 (COX-2), macrophage inflammatory protein 1alpha (MIP-1alpha), monocyte chemoattractant protein-1 (MCP-1), and interferon-gamma inducible protein 10 (IP-10). RESULTS: The results document that the GE used in this study inhibits LPS, cytokine, and amyloid Abeta peptide-induced expression of the proinflammatory genes TNF-alpha, IL-1beta, COX-2, MIP-alpha, MCP-1, and IP-10. The data provide experimental evidence that ginger can inhibit the activation of human monocytic THP-1 cells by different proinflammatory stimuli and reduce the expression of a wide range of inflammation-related genes in these microglial-like cells. CONCLUSIONS: The findings suggest that GE may be useful in delaying the onset and the progression of neurodegenerative disorders involving chronically activated microglial cells in the central nervous system.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Quimiocinas/antagonistas & inibidores , Citocinas/antagonistas & inibidores , Monócitos/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/efeitos dos fármacos , Zingiber officinale , Doença de Alzheimer/metabolismo , Técnicas de Cultura de Células , Quimiocina CCL2/antagonistas & inibidores , Quimiocina CCL3 , Quimiocina CCL4 , Quimiocina CXCL10 , Quimiocinas CXC/antagonistas & inibidores , Ciclo-Oxigenase 2 , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1/antagonistas & inibidores , Lipopolissacarídeos/antagonistas & inibidores , Proteínas Inflamatórias de Macrófagos/antagonistas & inibidores , Proteínas de Membrana , Monócitos/metabolismo , Extratos Vegetais/farmacologia , Placa Amiloide/metabolismo , Prostaglandina-Endoperóxido Sintases/efeitos dos fármacos , RNA Mensageiro , Fator de Necrose Tumoral alfa/antagonistas & inibidores
5.
Mol Cell Biol ; 23(12): 4295-306, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12773571

RESUMO

The mammalian Bin1/Amphiphysin II gene encodes an assortment of alternatively spliced adapter proteins that exhibit markedly divergent expression and subcellular localization profiles. Bin1 proteins have been implicated in a variety of different cellular processes, including endocytosis, actin cytoskeletal organization, transcription, and stress responses. To gain insight into the physiological functions of the Bin1 gene, we have disrupted it by homologous recombination in the mouse. Bin1 loss had no discernible impact on either endocytosis or phagocytosis in mouse embryo-derived fibroblasts and macrophages, respectively. Similarly, actin cytoskeletal organization, proliferation, and apoptosis in embryo fibroblasts were all unaffected by Bin1 loss. In vivo, however, Bin1 loss resulted in perinatal lethality. Bin1 has been reported to affect muscle cell differentiation and T-tubule formation. No striking histological abnormalities were evident in skeletal muscle of Bin1 null embryos, but severe ventricular cardiomyopathy was observed in these embryos. Ultrastructurally, myofibrils in ventricular cardiomyocytes of Bin1 null embryos were severely disorganized. These results define a developmentally critical role for the Bin1 gene in cardiac muscle development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/genética , Endocitose , Músculos/citologia , Proteínas do Tecido Nervoso , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética , Actinas/metabolismo , Animais , Apoptose , Western Blotting , Cardiomiopatias/patologia , Divisão Celular , Linhagem Celular , Meios de Cultura Livres de Soro/farmacologia , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Imuno-Histoquímica , Macrófagos , Camundongos , Modelos Genéticos , Músculo Esquelético/citologia , Músculo Esquelético/ultraestrutura , Músculos/metabolismo , Músculos/ultraestrutura , Mutagênese Sítio-Dirigida , Fagocitose , Reação em Cadeia da Polimerase , Isoformas de Proteínas , Estrutura Terciária de Proteína , Fatores de Tempo
6.
Stroke ; 34(2): 468-74, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12574562

RESUMO

BACKGROUND AND PURPOSE: Factor Xa (FXa) is a key coagulation protease and target for novel antithrombotic agents for prevention and treatment of diverse thromboembolic disorders. In the present study we describe the effect of a novel, potent, and selective FXa inhibitor, DPC602, on brain damage and neurobehavioral consequence in a rat thromboembolic model of stroke. METHODS: Thromboembolic stroke was induced in rats by placement of an autologous clot into the middle cerebral artery. RESULTS: Laser-Doppler monitoring of cerebral blood flow demonstrated that DPC602 (8 mg/kg, single IV/IP bolus pretreatment) markedly improved cerebral blood flow after thromboembolic stroke by 25% to 160% (n=6; P<0.001) at 1 to 6 hours. DPC602 demonstrated concentration- and time-dependent reductions in infarct size, with maximal effect (89% reduction; n=14; P<0.001) at the highest dose over controls. Neurological function was also significantly improved in DPC602-treated rats at days 1, 3, and 7 (n=13; P<0.01). DPC602 treatment did not cause cerebral hemorrhage, assessed by free hemoglobin in the ischemic brain tissues. CONCLUSIONS: These data suggest that anticoagulation with a selective FXa inhibitor might ameliorate the extent of ischemic brain damage and neurological deficits after a thromboembolic event. Enhanced clot dissolution and early reperfusion may account for the cerebrovascular-protective effect of the drug.


Assuntos
Isquemia Encefálica/prevenção & controle , Encéfalo/efeitos dos fármacos , Inibidores do Fator Xa , Pirazóis/toxicidade , Acidente Vascular Cerebral/tratamento farmacológico , Tromboembolia/tratamento farmacológico , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia , Hemorragia Cerebral/etiologia , Circulação Cerebrovascular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/sangue , Inibidores Enzimáticos/uso terapêutico , Imuno-Histoquímica , Masculino , Artéria Cerebral Média/patologia , Selectina-P/análise , Pirazóis/efeitos adversos , Pirazóis/sangue , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia , Trombina/análise , Tromboembolia/complicações , Tromboembolia/patologia , Ativador de Plasminogênio Tecidual/análise , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...