Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003727

RESUMO

Atherosclerosis is the primary cause of cardiovascular disease. The development of plaque complications, such as calcification and neo-angiogenesis, strongly impacts plaque stability and is a good predictor of mortality in patients with atherosclerosis. Despite well-known risk factors of plaque complications, such as diabetes mellitus and chronic kidney disease, the mechanisms involved are not fully understood. We and others have identified that the concentration of circulating leucine-rich α-2 glycoprotein 1 (LRG1) was increased in diabetic and chronic kidney disease patients. Using apolipoprotein E knockout mice (ApoE-/-) (fed with Western diet) that developed advanced atherosclerosis and using human carotid endarterectomy, we showed that LRG1 accumulated into an atherosclerotic plaque, preferentially in calcified areas. We then investigated the possible origin of LRG1 and its functions on vascular cells and found that LRG1 expression was specifically enhanced in endothelial cells via inflammatory mediators and not in vascular smooth muscle cells (VSMC). Moreover, we identified that LRG1 was able to induce calcification and SMAD1/5-signaling pathways in VSMC. In conclusion, our results identified for the first time that LRG1 is a direct contributor to vascular calcification and suggest a role of this molecule in the development of plaque complications in patients with atherosclerosis.


Assuntos
Aterosclerose , Insuficiência Renal Crônica , Calcificação Vascular , Animais , Humanos , Camundongos , Aterosclerose/genética , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Leucina/metabolismo , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/metabolismo , Insuficiência Renal Crônica/metabolismo , Calcificação Vascular/etiologia , Calcificação Vascular/metabolismo
2.
Sci Transl Med ; 15(712): eabn5939, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37672568

RESUMO

Vascular calcification is an important risk factor for cardiovascular (CV) mortality in patients with chronic kidney disease (CKD). It is also a complex process involving osteochondrogenic differentiation of vascular smooth muscle cells (VSMCs) and abnormal deposition of minerals in the vascular wall. In an observational, multicenter European study, including 112 patients with CKD from Spain and 171 patients on dialysis from France, we used serum proteome analysis and further validation by ELISA to identify calprotectin, a circulating damage-associated molecular pattern protein, as being independently associated with CV outcome and mortality. This was confirmed in an additional cohort of 170 patients with CKD from Sweden, where increased serum calprotectin concentrations correlated with increased vascular calcification. In primary human VSMCs and mouse aortic rings, calprotectin exacerbated calcification. Treatment with paquinimod, a calprotectin inhibitor, as well as pharmacological inhibition of the receptor for advanced glycation end products and Toll-like receptor 4 inhibited the procalcifying effect of calprotectin. Paquinimod also ameliorated calcification induced by the sera of uremic patients in primary human VSMCs. Treatment with paquinimod prevented vascular calcification in mice with chronic renal failure induced by subtotal nephrectomy and in aged apolipoprotein E-deficient mice as well. These observations identified calprotectin as a key contributor of vascular calcification, and increased circulating calprotectin was strongly and independently associated with calcification, CV outcome, and mortality in patients with CKD. Inhibition of calprotectin might therefore be a promising strategy to prevent vascular calcification in patients with CKD.


Assuntos
Falência Renal Crônica , Insuficiência Renal Crônica , Calcificação Vascular , Humanos , Animais , Camundongos , Idoso , Complexo Antígeno L1 Leucocitário , Insuficiência Renal Crônica/complicações , Alarminas
3.
Curr Biol ; 29(14): 2407-2414.e7, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31257143

RESUMO

The spindle checkpoint monitors kinetochore-microtubule interactions and generates a "wait anaphase" delay when any defects are apparent [1-3]. This provides time for cells to correct chromosome attachment errors and ensure high-fidelity chromosome segregation. Checkpoint signals are generated at unattached chromosomes during mitosis. To activate the checkpoint, Mps1Mph1 kinase phosphorylates the kinetochore component KNL1Spc105/Spc7 on conserved MELT motifs to recruit Bub3-Bub1 complexes [4-6] via a direct Bub3 interaction with phospho-MELT motifs [7, 8]. Mps1Mph1 then phosphorylates Bub1, which strengthens its interaction with Mad1-Mad2 complexes to produce a signaling platform [9, 10]. The Bub1-Mad1 platform is thought to recruit Mad3, Cdc20, and Mad2 to produce the mitotic checkpoint complex (MCC), which is the diffusible wait anaphase signal [9, 11, 12]. The MCC binds and inhibits the mitotic E3 ubiquitin ligase, known as Cdc20-anaphase promoting complex/cyclosome (APC/C), and stabilizes securin and cyclin to delay anaphase onset [13-17]. Here we demonstrate, in both budding and fission yeast, that kinetochores and KNL1Spc105/Spc7 can be bypassed; simply inducing heterodimers of Mps1Mph1 kinase and Bub1 is sufficient to trigger metaphase arrest that is dependent on Mad1, Mad2, and Mad3. We use this to dissect the domains of Bub1 necessary for arrest, highlighting the need for Bub1-CD1, which binds Mad1 [9], and Bub1's highly conserved N-terminal tetratricopeptide repeat (TPR) domain [18, 19]. We demonstrate that the Bub1 TPR domain is both necessary and sufficient to bind and recruit Mad3. We propose that this brings Mad3 into close proximity to Mad1-Mad2 and Mps1Mph1 kinase, enabling efficient generation of MCC complexes.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Repetições de Tetratricopeptídeos/genética , Proteínas de Ciclo Celular/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...