Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38399848

RESUMO

Bacterial cellulose (BC) is a highly pure polysaccharide biopolymer that can be produced by various bacterial genera. Even though BC lacks functional properties, its porosity, three-dimensional network, and high specific surface area make it a suitable carrier for functional composite materials. In the present study, BC-producing bacteria were isolated from kombucha beverage and identified using a molecular method. Two sets of the BC hydrogels were produced in static conditions after four and seven days. Afterwards, two different synthesis pathways were applied for BC functionalization. The first method implied the incorporation of previously synthesized HAp/TiO2 nanocomposite using an immersion technique, while the second method included the functionalization of BC during the synthesis of HAp/TiO2 nanocomposite in the reaction mixture. The primary goal was to find the best method to obtain the functionalized material. Physicochemical and microstructural properties were analyzed by SEM, EDS, FTIR, and XRD methods. Further properties were examined by tensile test and thermogravimetric analysis, and antimicrobial activity was assessed by a total plate count assay. The results showed that HAp/TiO2 was successfully incorporated into the produced BC hydrogels using both methods. The applied methods of incorporation influenced the differences in morphology, phase distribution, mechanical and thermal properties, and antimicrobial activity against Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Proteus mirabilis (ATCC 12453), and Candida albicans (ATCC 10231). Composite material can be recommended for further development and application in environments that are suitable for diseases spreading.

2.
Polymers (Basel) ; 15(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37765610

RESUMO

This paper presents sustainable technology for environmentally friendly composite production. Biobased unsaturated polyester resin (b-UPR), synthesized from waste polyethylene terephthalate (PET) glycosylate and renewable origin maleic anhydride (MAnh) and propylene glycol (PG), was reinforced with unmodified and vinyl-modified biosilica nanoparticles obtained from rice husk. The structural and morphological properties of the obtained particles, b-UPR, as well as composites, were characterized by Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. The study of the influence of biosilica modification on the mechanical properties of composites was supported by hardness modeling. Improvement of the tensile strength of the b-UPR-based composite at 2.5 wt.% addition of biosilica modified with vinyl silane, named "b-UPR/SiO2-V" composite, has been achieved with 88% increase. The thermal aging process applied to the b-UPR/SiO2-V composite, which simulates use over the product's lifetime, leads to the deterioration of composites that were used as fillers in commercial unsaturated polyester resin (c-UPR). The grinded artificially aged b-UPR composites were used as filler in c-UPR for the production of a table top layer with outstanding mechanical properties, i.e., impact resistance and microhardness, as well as fire resistance rated in the V-0 category according to the UL-94 test. Developing sustainable composites that are chemically synthesized from renewable sources is important from the aspect of preserving the environment and existing resources as well as the extending their life cycle.

3.
J Environ Manage ; 326(Pt B): 116838, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36435138

RESUMO

Multifunctional lignin bio-based adsorbent, b-LMS, was obtained via inverse copolymerization in the suspension of acryloyl modified kraft lignin (KfL-AA) and bio-based trimethylolpropane triacrylate (bio-TMPTA). Morphological and structural characterization of KfL-AA and b-LMS was performed using BET, FTIR, Raman, NMR, TGA, SEM, and XPS techniques. The b-LMS microspheres with 253 ± 42 µm diameters, 69.4 m2 g-1 surface area, and 59% porosity efficiently adsorb Malachite Green (MG), Tartrazine (T), and Methyl Red (MR) dye. The influence of pH, pollutant concentration, temperature, and time on the removal efficiency was studied in a batch mode. Favorable and spontaneous processes with high adsorption capacities e.g. 116.8 mg g-1 for MG, 86.8 mg g-1 for T, and 68.6 mg g-1 for MR indicate the significant adsorptive potential of b-LMS. Results from diffusional and single mass transfer resistance studies indicate that pore diffusion is a rate-limiting step. Theoretical calculations confirmed a higher affinity of b-LMS to cationic dye MG compared with an anionic and neutral one, i.e. T and MR, respectively. The data fitting from a flow system, using semi-empirical equations and Pore Surface Diffusion Modelling (PSDM) provided breakthrough point determination. The results from the desorption and competitive adsorption study proved the exceptional performance of b-LMS. Moreover, sulfation of b-LMS, i.e.production of b-LMS-OSO3H, introduced high-affinity sulfate groups with respect to cationic dye and cations. Developed methodology implements the principle of sustainable development and offers concept whose results contribute to the minimization of environmental pollution.


Assuntos
Corantes , Poluentes Químicos da Água , Corantes/química , Adsorção , Microesferas , Lignina , Poluentes Químicos da Água/química , Cinética , Cátions/química , Modelos Teóricos
4.
Polymers (Basel) ; 14(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35335585

RESUMO

In this study, silicate nanofillers; dicalcium silicate, magnesium silicate, tricalcium silicate, and wollastonite; were synthesized using four different methods and incorporated into the epoxy resin to improve its mechanical properties. Characterization of the newly synthesized nanofillers was performed using Fourier-transformation infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The purpose of this study was to analyze newly developed composite materials reinforced with silicate nanoparticles utilizing tensile testing and a full-field non-contact 3D Digital Image Correlation (DIC) method. Analysis of deformation and displacement fields gives precise material behavior during testing. Testing results allowed a more reliable assessment of the structural integrity of epoxy composite materials reinforced using different silicate nanofillers. It was concluded that the addition of 3% of dicalcium silicate, magnesium silicate, tricalcium silicate, and wollastonite lead to the increasement of tensile strength up to 31.5%, 29.0%, 27.5%, and 23.5% in comparison with neat epoxy, respectively. In order to offer more trustworthy information about the viscoelastic behavior of neat epoxy and composites, a dynamic mechanical analysis (DMA) was also performed and rheological measurements of uncured epoxy matrix and epoxy suspensions were obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...