Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 98(9): 5043-8, 2001 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-11309491

RESUMO

Skp2 is a member of the F-box family of substrate-recognition subunits of SCF ubiquitin-protein ligase complexes that has been implicated in the ubiquitin-mediated degradation of several key regulators of mammalian G(1) progression, including the cyclin-dependent kinase inhibitor p27, a dosage-dependent tumor suppressor protein. In this study, we examined Skp2 and p27 protein expression by immunohistochemistry in normal oral epithelium and in different stages of malignant oral cancer progression, including dysplasia and oral squamous cell carcinoma. We found that increased levels of Skp2 protein are associated with reduced p27 in a subset of oral epithelial dysplasias and carcinomas compared with normal epithelial controls. Tumors with high Skp2 (>20% positive cells) expression invariably showed reduced or absent p27 and tumors with high p27 (>20% positive cells) expression rarely showed Skp2 positivity. Increased Skp2 protein levels were not always correlated with increased cell proliferation (assayed by Ki-67 staining), suggesting that alterations of Skp2 may contribute to the malignant phenotype without affecting proliferation. Skp2 protein overexpression may lead to accelerated p27 proteolysis and contribute to malignant progression from dysplasia to oral epithelial carcinoma. Moreover, we also demonstrate that Skp2 has oncogenic potential by showing that Skp2 cooperates with H-Ras(G12V) to malignantly transform primary rodent fibroblasts as scored by colony formation in soft agar and tumor formation in nude mice. The observations that Skp2 can mediate transformation and is up-regulated during oral epithelial carcinogenesis support a role for Skp2 as a protooncogene in human tumors.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Proteínas Oncogênicas/metabolismo , Proteínas Supressoras de Tumor , Ágar , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proteínas de Ciclo Celular/genética , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p27 , Progressão da Doença , Células Epiteliais/citologia , Células Epiteliais/patologia , Epitélio/metabolismo , Epitélio/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Imuno-Histoquímica , Antígeno Ki-67/análise , Proteínas Associadas aos Microtúbulos/metabolismo , Neoplasias Bucais/metabolismo , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Proteínas Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ratos , Proteínas Quinases Associadas a Fase S , Transfecção
2.
EMBO J ; 19(20): 5362-75, 2000 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-11032804

RESUMO

The ubiquitin protein ligase SCF(Skp2) is composed of Skp1, Cul1, Roc1/Rbx1 and the F-box protein Skp2, the substrate-recognition subunit. Levels of Skp2 decrease as cells exit the cell cycle and increase as cells re-enter the cycle. Ectopic expression of Skp2 in quiescent fibroblasts causes mitogen-independent S-phase entry. Hence, mechanisms must exist for limiting Skp2 protein expression during the G(0)/G(1) phases. Here we show that Skp2 is degraded by the proteasome in G(0)/G(1) and is stabilized when cells re-enter the cell cycle. Rapid degradation of Skp2 in quiescent cells depends on Skp2 sequences that contribute to Cul1 binding and interference with endogenous Cul1 function in serum-deprived cells induces Skp2 expression. Furthermore, recombinant Cul1-Roc1/Rbx1-Skp1 complexes can catalyse Skp2 ubiquitylation in vitro. These results suggest that degradation of Skp2 in G(0)/G(1) is mediated, at least in part, by an autocatalytic mechanism involving a Skp2-bound Cul1-based core ubiquitin ligase and imply a role for this mechanism in the suppression of SCF(Skp2) ubiquitin protein ligase function during the G(0)/G(1) phases of the cell cycle.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Culina , Ligases/química , Ligases/metabolismo , Proteínas de Saccharomyces cerevisiae , Complexos Ubiquitina-Proteína Ligase , Ubiquitinas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular , Meios de Cultura Livres de Soro , Cisteína Endopeptidases/metabolismo , Fibroblastos , Teste de Complementação Genética , Humanos , Ligases/genética , Substâncias Macromoleculares , Dados de Sequência Molecular , Complexos Multienzimáticos/metabolismo , Complexo de Endopeptidases do Proteassoma , Ligação Proteica , Processamento de Proteína Pós-Traducional , Subunidades Proteicas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Alinhamento de Sequência , Supressão Genética/genética , Ubiquitina-Proteína Ligases , Leveduras/genética , Leveduras/crescimento & desenvolvimento
3.
Nat Genet ; 23(2): 245-8, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10508527

RESUMO

The sequential timing of cell-cycle transitions is primarily governed by the availability and activity of key cell-cycle proteins. Recent studies in yeast have identified a class of ubiquitin ligases (E3 enzymes) called SCF complexes, which regulate the abundance of proteins that promote and inhibit cell-cycle progression at the G1-S phase transition. SCF complexes consist of three invariable components, Skp1, Cul-1 (Cdc53 in yeast) and Rbx1, and a variable F-box protein that recruits a specific cellular protein to the ubquitin pathway for degradation. To study the role of Cul-1 in mammalian development and cell-cycle regulation, we generated mice deficient for Cul1 and analysed null embryos and heterozygous cell lines. We show that Cul1 is required for early mouse development and that Cul1 mutants fail to regulate the abundance of the G1 cyclin, cyclin E (encoded by Ccne), during embryogenesis.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Culina , Ciclina E/genética , Morte Fetal/genética , Proteínas de Saccharomyces cerevisiae , Animais , Morte Celular/genética , Divisão Celular/genética , Células Cultivadas , Ciclina E/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário e Fetal , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imuno-Histoquímica , Hibridização In Situ , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Dados de Sequência Molecular , Mutação , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/análise
4.
Genes Dev ; 13(14): 1822-33, 1999 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-10421634

RESUMO

pVHL, the product of the VHL tumor suppressor gene, plays an important role in the regulation of cell growth and differentiation of human kidney cells, and inactivation of the VHL gene is the most frequent genetic event in human kidney cancer. The biochemical function of pVHL is unknown. Here we report that pVHL exists in vivo in a complex that displays ubiquitination-promoting activity in conjunction with the universally required components E1, E2, and ubiquitin. pVHL-associated ubiquitination activity requires, at a minimum, pVHL to bind elongin C and Cul-2, relatives of core components of SCF (Skp1-Cdc53/Cul-1-F-box protein) E3 ligase complexes. Notably, certain tumor-derived mutants of pVHL demonstrate loss of associated ubiquitination promoting activity. These results identify pVHL as a component of a potential SCF-like E3 ubiquitin-protein ligase complex and suggest a direct link between pVHL tumor suppressor and the process of ubiquitination.


Assuntos
Genes Supressores de Tumor , Ligases/metabolismo , Proteínas/metabolismo , Proteínas Supressoras de Tumor , Sequência de Aminoácidos , Sequência de Bases , Extratos Celulares , Primers do DNA , Humanos , Neoplasias Renais/metabolismo , Ligases/genética , Dados de Sequência Molecular , Mutação , Testes de Precipitina , Proteínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases , Ubiquitinas/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau
5.
J Mol Biol ; 288(5): 941-52, 1999 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-10329190

RESUMO

The expression of immunoglobulin genes is controlled in part by the DNA-binding protein Oct-1 and the B cell-specific transcription co-activator, Bob1 (also known as OCA-B or OBF-1) that together form a complex on the Igkappa promoter. We have characterised the assembly of the ternary complex using biophysical methods. Bob1 binds specifically as a monomer to the complex of the Oct-1 DNA-binding domain (Oct-1 POU) and the Igkappa promoter, but binds weakly to either Oct-1 POU or the Igkappa promoter alone, indicating that both are required to make an avid complex. Ternary complex formation requires a defined DNA sequence, as the stability of the complex can be strongly affected by a single base-pair change or by removing 5-methyl groups from selected thymine bases.In isolation, Bob1 appears to have little secondary structure, but may become partially structured upon recruitment into the ternary complex as demonstrated by circular dichroism spectra and calorimetry. These and other findings suggest that ternary complex formation requires a defined geometry of the POU/DNA complex, and that the co-activator makes stereo-specific contacts to both the POU protein and the major groove of the DNA that induces its fold.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Transativadores/fisiologia , Fatores de Transcrição/fisiologia , Sequência de Bases/fisiologia , Calorimetria , Dicroísmo Circular , Cristalografia por Raios X , Fator C1 de Célula Hospedeira , Cinética , Modelos Genéticos , Modelos Moleculares , Fator 1 de Transcrição de Octâmero , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão , Termodinâmica , Fatores de Tempo
6.
Exp Cell Res ; 247(2): 554-62, 1999 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-10066383

RESUMO

In Saccharomyces cerevisiae, the initiation of DNA replication and mitotic progression requires SKP1p function. SKP1p is an essential subunit of a newly identified class of E3 ubiquitin protein ligases, the SCF complexes, that catalyze ubiquitin-mediated proteolysis of key cell-cycle-regulatory proteins at distinct times in the cell cycle. SKP1p is also required for proper kinetochore assembly. Little is known about the corresponding human homolog, p19(SKP1), except that it is expressed throughout the cell cycle and that it too is a component of an S-phase-regulating SCF-E3 ligase complex. Here we show by immunofluorescence microscopy that p19(SKP1) localizes to the centrosomes. Centrosome association occurs throughout the mammalian cell cycle, including all stages of mitosis. These findings suggest that p19(SKP1) is a novel component of the centrosome and the mitotic spindle, which, in turn, implies a physiological role of this protein in the regulation of one or more aspects of the centrosome cycle.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Ligases/metabolismo , Fuso Acromático/metabolismo , Animais , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Interfase , Mitose , Coelhos , Proteínas Quinases Associadas a Fase S , Células Tumorais Cultivadas
7.
EMBO J ; 17(2): 368-83, 1998 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-9430629

RESUMO

In normal and transformed cells, the F-box protein p45(SKP2) is required for S phase and forms stable complexes with p19(SKP1) and cyclin A-cyclin-dependent kinase (CDK)2. Here we identify human CUL-1, a member of the cullin family, and the ubiquitin-conjugating enzyme CDC34 as additional partners of p45(SKP2) in vivo. CUL-1 also associates with cyclin A and p19(SKP1) in vivo and, with p45(SKP2), they assemble into a large multiprotein complex. In Saccharomyces cerevisiae, a complex of similar molecular composition (an F-box protein, a member of the cullin family and a homolog of p19(SKP1)) forms a functional E3 ubiquitin protein ligase complex, designated SCFCDC4, that facilitates ubiquitination of a CDK inhibitor by CDC34. The data presented here imply that the p45(SKP2)-CUL-1-p19(SKP1) complex may be a human representative of an SCF-type E3 ubiquitin protein ligase. We propose that all eukaryotic cells may use a common ubiquitin conjugation apparatus to promote S phase. Finally, we show that multiprotein complex formation involving p45(SKP2)-CUL-1 and p19(SKP1) is governed, in part, by periodic, S phase-specific accumulation of the p45(SKP2) subunit and by the p45(SKP2)-bound cyclin A-CDK2. The dependency of p45(SKP2)-p19(SKP1) complex formation on cyclin A-CDK2 may ensure tight coordination of the activities of the cell cycle clock with those of a potential ubiquitin conjugation pathway.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Culina , Evolução Molecular , Proteínas de Helminto/metabolismo , Ligases/metabolismo , Complexos Ubiquitina-Proteína Ligase , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Animais , Anticorpos/química , Ciclo Celular , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/imunologia , Linhagem Celular , Ciclina A/metabolismo , Proteínas de Helminto/biossíntese , Proteínas de Helminto/genética , Proteínas de Helminto/imunologia , Humanos , Leucina/metabolismo , Ligases/genética , Substâncias Macromoleculares , Camundongos , Dados de Sequência Molecular , Família Multigênica , Complexos Multiproteicos , Estrutura Terciária de Proteína , Proteínas Quinases Associadas a Fase S , Proteínas de Saccharomyces cerevisiae , Homologia de Sequência de Aminoácidos , Transfecção , Células Tumorais Cultivadas , Enzimas de Conjugação de Ubiquitina , Ubiquitina-Proteína Ligases
8.
Biol Chem ; 377(10): 669-73, 1996 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8922596

RESUMO

We have used a yeast one hybrid screen to search for factors interacting with a subsegment of the immunoglobulin heavy chain (IgH) intronic enhancer. The 51 bp enhancer segment harbored a so-called E-box and an octamer site, known to bind helix-loop-helix transcription factors and Oct factors, respectively. Mammalian Oct-2A protein was also expressed in yeast, to select for transcription factors possibly cooperating with Oct-2. Six strongly interacting protein clones were selected from a peripheral blood lymphocyte library. These included a B cell-specific co-activator, termed Bob1, that directly binds to Oct-2 (Gstaiger et al., 1995, Nature 373, 360-362). Three further clones represent the helix-loop factors ITF-1 and ITF-2, another one the nucleolar protein nucleophosmin, or B23. Unexpectedly, the sixth clone with strong activity encoded the BZLF1 (= ZLF1, zta, ZEBRA, EB1) protein of Epstein-Barr virus (EBV). BZLF1 is a leucine zipper-related transcription factor and induces the switch from viral latency to lytic growth. We found that BZLF1 also activated transcription in transiently transfected mammalian cells via a consensus binding site located within the IgH intron enhancer. BZLF1 may thus influence immunoglobulin heavy chain expression in EBV-infected B lymphocytes.


Assuntos
Elementos Facilitadores Genéticos , Herpesvirus Humano 4/genética , Cadeias Pesadas de Imunoglobulinas/genética , Saccharomyces cerevisiae/genética , Sequência Consenso , Células HeLa , Humanos , Íntrons
10.
EMBO J ; 15(11): 2781-90, 1996 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-8654375

RESUMO

We have shown previously that both octamer binding transcription factors, namely the ubiquitous Oct-1 and the B cell-specific Oct-2A protein, can be enhanced in transcriptional activity by their association with the B cell-specific coactivator protein Bob1, also called OBF-1 or OCA-B. Here we study the structural requirements for ternary complex formation of DNA-Oct-Bob1 and coactivation function of Bob1. In analogy to DNA-bound transcription factors, Bob1 has a modular structure that includes an interaction domain (amino acids 1-65) and a C-terminal domain (amino acids 65-256), both important for transcriptional activation. A mutational analysis has resolved a region of seven amino acids (amino acids 26-32) in the N-terminus of Bob1 that are important for contacting the DNA binding POU domain of Oct-1 or Oct-2. In contrast to the viral coactivator VP16 (vmw65), which interacts with Oct-1 via the POU homeosubdomain, Bob1 association with Oct factors requires residues located in the POU-specific subdomain. Because the same residues are also involved in DNA recognition, we surmised that this association would affect the DNA binding specificity of the Oct-Bob1 complex compared with free Oct factors. While Oct-1 or Oct-2 bind to a large variety of octamer sequences, Bob1 ternary complex formation is indeed highly selective and occurs only in a subset of these sequences, leading to the differential coactivation of octamer-containing promoters. The results uncover a new level in selectivity that furthers our understanding in the regulation of cell type-specific gene expression.


Assuntos
Linfócitos B/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Regiões Promotoras Genéticas , Transativadores/fisiologia , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Regulação da Expressão Gênica , Células HeLa/metabolismo , Proteína Vmw65 do Vírus do Herpes Simples/genética , Fator C1 de Célula Hospedeira , Humanos , Substâncias Macromoleculares , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Fator 1 de Transcrição de Octâmero , Fator 2 de Transcrição de Octâmero , Ligação Proteica , Estrutura Terciária de Proteína , RNA Mensageiro/genética , Transcrição Gênica , Ativação Transcricional
11.
Gene ; 168(2): 165-7, 1996 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-8654937

RESUMO

Two versatile eukaryotic expression vectors have been developed which permit the production of an epitope-tagged cDNA insert by transient transfection in mammalian cells or by in vitro transcription-translation. The first vector, pCATCH, can be used to clone cDNA inserts in three different frames via eight unique restriction sites in a multiple cloning site (MCS) located downstream from both the FLAG epitope and the specific heart muscle kinase phosphorylation site, conferring the possibility of in vitro radiolabelling. A specific protease cleavage site enables the removal of the FLAG epitope, simplifying affinity purification of recombinant CATCH proteins. pCATCH possesses stop codons in all three reading frames at the 3' terminal end of the MCS. A derivate of this vector, pCATCH-NLS, was constructed by incorporating an SV40 nuclear localisation signal upstream from the MCS, for directed localisation of the tagged proteins.


Assuntos
Vetores Genéticos , Plasmídeos , Transfecção , Sequência de Aminoácidos , Animais , Sequência de Bases , Núcleo Celular/metabolismo , Clonagem Molecular , Elementos de DNA Transponíveis , DNA Complementar , Epitopos , Células Eucarióticas , Mamíferos , Dados de Sequência Molecular , Mutagênese Insercional , Miocárdio/enzimologia , Biossíntese de Proteínas , Proteínas Quinases/biossíntese , Proteínas Recombinantes/biossíntese , Mapeamento por Restrição , Sitios de Sequências Rotuladas , Vírus 40 dos Símios/genética , Transcrição Gênica
12.
Nature ; 373(6512): 360-2, 1995 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-7779176

RESUMO

The octamer motif (ATGCAAAT) paradoxically plays a central role in mediating the activity of both B-cell specific and ubiquitous promoters. It has been widely assumed that the predominantly lymphoid-restricted octamer-binding factor Oct-2 mediates tissue-specific promoter activity, whereas the ubiquitously expressed Oct-1 mediates general promoter activity, but this view has been challenged. Here we use a modified yeast one-hybrid assay to isolate a B-cell factor, Bob1, which associates with either Oct-2 or Oct-1. In transfection experiments, this factor boosts Oct-1-mediated promoter activity and to a lesser extent, that of Oct-2. This coactivation is strictly dependent on the specific interaction with Oct-1 or Oct-2 because deletion of the octamer motif abolishes coactivation. We conclude that Bob1 could represent a new tissue-specific transcriptional coactivator which may convert a ubiquitously expressed transcription factor to a cell-type-specific activator.


Assuntos
Linfócitos B/metabolismo , Proteínas de Ligação a DNA/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular , DNA/metabolismo , Células HeLa , Fator C1 de Célula Hospedeira , Humanos , Cadeias kappa de Imunoglobulina/genética , Dados de Sequência Molecular , Fator 1 de Transcrição de Octâmero , Fator 2 de Transcrição de Octâmero , Regiões Promotoras Genéticas , Ligação Proteica , Saccharomyces cerevisiae/genética , Transativadores/genética , Transcrição Gênica
13.
Nucleic Acids Res ; 22(20): 4031-8, 1994 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-7937127

RESUMO

Transcription factors often contain activation domains that interact with the basic transcription machinery. We have developed a functional screening strategy in mammalian cells to selectively isolate activation domains from a library of random DNA inserts. For this, sonicated DNA fragments are cloned next to the DNA binding domain of GAL4 factor in a plasmid that also contains the SV40 origin of replication. Pools of fusion protein clones are transfected into CV-1-5GT monkey cells containing an SV40 T antigen gene under the control of a promoter with GAL4 binding sites. Plasmids that express functional transactivating fusion proteins activate the T antigen gene, thus promoting selective amplification of the plasmid in the mammalian host cell line. Using this method, we were able to select strong enhancer-type activation domains from the immediate early regions of two herpesviruses, namely pseudorabies virus and bovine herpesvirus 1. In both cases, the activation domains selected were homologues of the ICP4 regulatory protein of herpes simplex virus. The activation domain from pseudorabies virus is four times stronger than the activation domain of herpes simplex virus protein VP16 (Vmw65), making it the strongest activation domain characterized so far. This activator trap method should be useful for precisely localizing activation domain(s) in known factors, or to identify mammalian transcriptional adaptors that do not bind DNA and which may escape conventional detection methods.


Assuntos
DNA Viral/química , Proteínas de Saccharomyces cerevisiae , Transativadores/isolamento & purificação , Fatores de Transcrição , Sequência de Aminoácidos , Animais , Antígenos Transformantes de Poliomavirus/genética , Sítios de Ligação , Linhagem Celular , Clonagem Molecular , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA , Proteínas Fúngicas/metabolismo , Haplorrinos , Proteína Vmw65 do Vírus do Herpes Simples/química , Proteína Vmw65 do Vírus do Herpes Simples/genética , Herpesvirus Bovino 1/genética , Proteínas Imediatamente Precoces/química , Proteínas Imediatamente Precoces/genética , Dados de Sequência Molecular , Plasmídeos , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão , Vírus 40 dos Símios/genética , Ativação Transcricional , Transfecção , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA