Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 52(12): 6872-6880, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29722537

RESUMO

Vacancy control can significantly enhance the performance of photocatalytic semiconductors for water purification. However, little is known about the mechanisms and approaches that could generate stable large vacancies. Here, we report a new mechanism to induce vacancy formation on nanocrystals for enhanced photocatalytic activity: the introduction of mesopores. We synthesized two nanosheet-assembled hierarchical 3D BiOCl mesoporous nanostructures with similar morphology and exposed facets but different nanosheet thickness. Positron annihilation analysis detected unprecedentedly large VBi‴ VO•• VBi‴ VO•• VBi‴ vacancy associates (as well as VBi‴ VO•• VBi‴) on BiOCl assembled from 3-6 nm nanosheets but only VBi‴ VO•• VBi‴ vacancy associates on BiOCl assembled from thicker (10-20 nm) nanosheets. Comparison of vacancy properties with 2D ultrathin 2.7 nm nanosheets (with VBi‴ VO•• VBi‴ and VBi‴) indicates that nanosheet thinness alone cannot explain the formation of such large atom vacancies. On the basis of density functional theory computations of formation energy of isolated Bi vacancy, we show that mesopores facilitate the formation of large vacancies to counterbalance thermodynamic instability caused by incompletely coordinated Bi and O atoms along the mesopore perimeters. We corroborate that the extraordinarily large VBi‴ VO•• VBi‴ VO•• VBi‴ vacancy associates facilitate photoexcitation of electrons and prevent the recombination of electron-hole pairs, which significantly enhances photocatalytic activity. This is demonstrated by the rapid mineralization of bisphenol A (10-5 M) with low photocatalyst loading (1 g L-1), as well as enhanced bacterial disinfection. Improved electron-hole separation is also corroborated by enhanced photocatalytic reduction of nitrate.


Assuntos
Nanopartículas , Nanoestruturas , Purificação da Água , Bismuto , Catálise
2.
Nanoscale ; 9(20): 6837-6845, 2017 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-28497832

RESUMO

The catalytic activity of counter electrodes (CEs) severely restricts the photovoltaic conversion efficiency of dye-sensitized solar cells. However, electrons trapped by bulk defects greatly reduce the catalytic activity of the CE. In this study, we report a novel In2S3-C-Au hybrid structure designed by simply decorating Au particles on the surface of carbon-coated hierarchical In2S3 flower-like architectures, which could avoid the abovementioned problems. This effect can be attributed to the unique contribution of indium sulfide, carbon, and Au from the hybrid structure, as well as to their synergy. Electrochemical measurements revealed that the hybrid structure possessed high catalytic activity and electrochemical stability for the interconversion of the redox couple I3-/I-. Moreover, this superior performance can be incorporated into the dye-sensitized solar cells system. We used this hybrid structure as a counter electrode by casting it on an FTO substrate to form a film, which displayed better photovoltaic conversion efficiency (8.91%) than the commercial Pt counterpart (7.67%).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...