Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(31): e2404229121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39052836

RESUMO

The distinct human leukocyte antigen (HLA) class I expression pattern of human extravillous trophoblasts (EVT) endows them with unique tolerogenic properties that enable successful pregnancy. Nevertheless, how this process is elaborately regulated remains elusive. Previously, E74 like ETS transcription factor 3 (ELF3) was identified to govern high-level HLA-C expression in EVT. In the present study, ELF3 is found to bind to the enhancer region of two adjacent NOD-like receptor (NLR) genes, NLR family pyrin domain-containing 2 and 7 (NLRP2, NLRP7). Notably, our analysis of ELF3-deficient JEG-3 cells, a human choriocarcinoma cell line widely used to study EVT biology, suggests that ELF3 transactivates NLRP7 while suppressing the expression of NLRP2. Moreover, we find that NLRP2 and NLRP7 have opposing effects on HLA-C expression, thus implicating them in immune evasion at the maternal-fetal interface. We confirmed that NLRP2 suppresses HLA-C levels and described a unique role for NLRP7 in promoting HLA-C expression in JEG-3. These results suggest that these two NLR genes, which arose via gene duplication in primates, are fine-tuned by ELF3 yet have acquired divergent functions to enable proper expression levels of HLA-C in EVT, presumably through modulating the degradation kinetics of IkBα. Targeting the ELF3-NLRP2/NLRP7-HLA-C axis may hold therapeutic potential for managing pregnancy-related disorders, such as recurrent hydatidiform moles and fetal growth restriction, and thus improve placental development and pregnancy outcomes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Trofoblastos Extravilosos , Antígenos HLA-C , Trofoblastos , Feminino , Humanos , Gravidez , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Antígenos HLA-C/metabolismo , Antígenos HLA-C/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Trofoblastos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
2.
Biomed Pharmacother ; 177: 116930, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878638

RESUMO

The tumor microenvironment (TME) is a combination of tumor cells and indigenous host stroma, which consists of tumor-infiltrating immune cells, endothelial cells, fibroblasts, pericytes, and non-cellular elements. Tumor-associated macrophages (TAMs) represent the major tumor-infiltrating immune cell type and are generally polarized into two functionally contradictory subtypes, namely classical activated M1 macrophages and alternatively activated M2 macrophages. Macrophage polarization refers to how macrophages are activated at a given time and space. The interplay between the TME and macrophage polarization can influence tumor initiation and progression, making TAM a potential target for cancer therapy. Here, we review the latest investigations on factors orchestrating macrophage polarization in the TME, how macrophage polarization affects tumor progression, and the perspectives in modulating macrophage polarization for cancer immunotherapy.


Assuntos
Neoplasias , Microambiente Tumoral , Macrófagos Associados a Tumor , Microambiente Tumoral/imunologia , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/patologia , Animais , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos/imunologia , Ativação de Macrófagos , Imunoterapia/métodos
3.
J Thorac Dis ; 16(4): 2314-2325, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38738230

RESUMO

Background: Gastrointestinal bleeding (GIB) is a notable complication in patients diagnosed with aortic dissection (AD). We evaluated the outcomes and identified the risk factors associated with GIB in patients with AD. Methods: A retrospective case-control study was conducted on patients diagnosed with type A aortic dissection (TAAD) who underwent total aortic arch replacement (TAAR) at our institution from July 2021 to July 2023. Comprehensive clinical data, laboratory findings, and imaging results were meticulously gathered and analyzed to identify potential risk factors linked to GIB in this patient cohort. Results: Of the 198 AD patients who underwent TAAR, 38 (19.2%) developed postoperative GIB (GIB group), with a median interval of 7 days between surgery and bleeding onset. The GIB group exhibited significantly higher mortality (26.3% vs. 3.1%, P<0.001), prolonged intensive care unit (ICU) stay {15 [interquartile range (IQR), 8-25] vs. 7 (IQR, 5-12) days, P<0.001}, and extended duration of ventilation [168 (IQR, 120-372) vs. 71 (IQR, 34-148) hours, P<0.001] compared to the control group (n=160, 80.8%). Logistic regression analysis identified age >54 years [odds ratio (OR): 3.529], intraoperative red blood cell (RBC) transfusion >600 mL (OR: 3.865), and concomitant celiac trunk and superior mesenteric artery (SMA) hypoperfusion (OR: 15.974) as independent risk factors for GIB in AD patients. Conclusions: GIB subsequent to TAAR in AD patients is linked to adverse prognosis. Factors such as advanced age, extensive intraoperative transfusion, and gastrointestinal (GI) perfusion abnormalities may heighten the risk of GIB in this patient population.

4.
JCO Clin Cancer Inform ; 8: e2300269, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38810206

RESUMO

PURPOSE: Eastern Cooperative Oncology Group (ECOG) performance status (PS) is a key clinical variable for cancer treatment and research, but it is usually only recorded in unstructured form in the electronic health record. We investigated whether natural language processing (NLP) models can impute ECOG PS using unstructured note text. MATERIALS AND METHODS: Medical oncology notes were identified from all patients with cancer at our center from 1997 to 2023 and divided at the patient level into training (approximately 80%), tuning/validation (approximately 10%), and test (approximately 10%) sets. Regular expressions were used to extract explicitly documented PS. Extracted PS labels were used to train NLP models to impute ECOG PS (0-1 v 2-4) from the remainder of the notes (with regular expression-extracted PS documentation removed). We assessed associations between imputed PS and overall survival (OS). RESULTS: ECOG PS was extracted using regular expressions from 495,862 notes, corresponding to 79,698 patients. A Transformer-based Longformer model imputed PS with high discrimination (test set area under the receiver operating characteristic curve 0.95, area under the precision-recall curve 0.73). Imputed poor PS was associated with worse OS, including among notes with no explicit documentation of PS detected (OS hazard ratio, 11.9; 95% CI, 11.1 to 12.8). CONCLUSION: NLP models can be used to impute performance status from unstructured oncologist notes at scale. This may aid the annotation of oncology data sets for clinical outcomes research and cancer care delivery.


Assuntos
Registros Eletrônicos de Saúde , Oncologia , Processamento de Linguagem Natural , Neoplasias , Humanos , Feminino , Masculino , Oncologia/métodos , Pessoa de Meia-Idade , Idoso
5.
Nature ; 630(8016): 437-446, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599239

RESUMO

Gasdermin D (GSDMD) is the common effector for cytokine secretion and pyroptosis downstream of inflammasome activation and was previously shown to form large transmembrane pores after cleavage by inflammatory caspases to generate the GSDMD N-terminal domain (GSDMD-NT)1-10. Here we report that GSDMD Cys191 is S-palmitoylated and that palmitoylation is required for pore formation. S-palmitoylation, which does not affect GSDMD cleavage, is augmented by mitochondria-generated reactive oxygen species (ROS). Cleavage-deficient GSDMD (D275A) is also palmitoylated after inflammasome stimulation or treatment with ROS activators and causes pyroptosis, although less efficiently than palmitoylated GSDMD-NT. Palmitoylated, but not unpalmitoylated, full-length GSDMD induces liposome leakage and forms a pore similar in structure to GSDMD-NT pores shown by cryogenic electron microscopy. ZDHHC5 and ZDHHC9 are the major palmitoyltransferases that mediate GSDMD palmitoylation, and their expression is upregulated by inflammasome activation and ROS. The other human gasdermins are also palmitoylated at their N termini. These data challenge the concept that cleavage is the only trigger for GSDMD activation. They suggest that reversible palmitoylation is a checkpoint for pore formation by both GSDMD-NT and intact GSDMD that functions as a general switch for the activation of this pore-forming family.


Assuntos
Gasderminas , Lipoilação , Proteínas de Ligação a Fosfato , Espécies Reativas de Oxigênio , Animais , Feminino , Humanos , Masculino , Camundongos , Aciltransferases/metabolismo , Microscopia Crioeletrônica , Cisteína/metabolismo , Gasderminas/química , Gasderminas/metabolismo , Inflamassomos/metabolismo , Lipossomos/metabolismo , Lipossomos/química , Mitocôndrias/metabolismo , Proteínas de Ligação a Fosfato/química , Proteínas de Ligação a Fosfato/metabolismo , Piroptose , Espécies Reativas de Oxigênio/metabolismo , Células THP-1
6.
J Reprod Immunol ; 163: 104244, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555747

RESUMO

Implantation and maintenance of pregnancy involve intricate immunological processes that enable the developing fetus to coexist with the maternal immune system. Progesterone, a critical hormone during pregnancy, is known to promote immune tolerance and prevent preterm labor. However, the mechanism by which progesterone mediates these effects remains unclear. In this study, we investigated the role of the non-classical progesterone receptor membrane component 1 (PGRMC1) in progesterone signaling at the maternal-fetal interface. Using JEG3 cells, a trophoblast model cell line, we observed that progesterone stimulation increased the expression of human leukocyte antigen-C (HLA-C) and HLA-G, key molecules involved in immune tolerance. We also found that progesterone upregulated the expression of the transcription factor ELF3, which is known to regulate trophoblast-specific HLA-C expression. Interestingly, JEG3 cells lacked expression of classical progesterone receptors (PRs) but exhibited high expression of PGRMC1, a finding we confirmed in primary trophoblasts by mining sc-RNA seq data from human placenta. To investigate the role of PGRMC1 in progesterone signaling, we used CRISPR/Cas9 technology to knockout PGRMC1 in JEG3 cells. PGRMC1-deficient cells showed a diminished response to progesterone stimulation. Furthermore, we found that the progesterone antagonist RU486 inhibited ELF3 expression in a PGRMC1-dependent manner, suggesting that RU486 acts as a progesterone antagonist by competing for receptor binding. Additionally, we found that RU486 inhibited cell invasion, an important process for successful pregnancy, and this inhibitory effect was dependent on PGRMC1. Our findings highlight the crucial role of PGRMC1 in mediating the immunoregulatory effects of progesterone at the maternal-fetal interface.


Assuntos
Proteínas de Membrana , Progesterona , Receptores de Progesterona , Trofoblastos , Humanos , Receptores de Progesterona/metabolismo , Feminino , Gravidez , Progesterona/metabolismo , Progesterona/farmacologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Trofoblastos/metabolismo , Trofoblastos/imunologia , Placenta/imunologia , Placenta/metabolismo , Transdução de Sinais/imunologia , Troca Materno-Fetal/imunologia , Implantação do Embrião/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA