Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(23): 24268-24281, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38044586

RESUMO

Direct optical printing of functional inorganics shows tremendous potential as it enables the creation of intricate two-dimensional (2D) patterns and affordable design and production of various devices. Although there have been recent advancements in printing processes using short-wavelength light or pulsed lasers, the precise control of the vertical thickness in printed 3D structures has received little attention. This control is vital to the diverse functionalities of inorganic thin films and their devices, as they rely heavily on their thicknesses. This lack of research is attributed to the technical intricacy and complexity involved in the lithographic processes. Herein, we present a generalized optical 3D printing process for inorganic nanoparticles using maskless digital light processing. We develop a range of photocurable inorganic nanoparticle inks encompassing metals, semiconductors, and oxides, combined with photolinkable ligands and photoacid generators, enabling the direct solidification of nanoparticles in the ink medium. Our process creates complex and large-area patterns with a vertical resolution of ∼50 nm, producing 50-nm-thick 2D films and several micrometer-thick 3D architectures with no layer height difference via layer-by-layer deposition. Through fabrication and operation of multilayered switching devices with Au electrodes and Ag-organic resistive layers, the feasibility of our process for cost-effective manufacturing of multilayered devices is demonstrated.

2.
Nat Commun ; 14(1): 8460, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123571

RESUMO

Three-dimensional (3D) microprinting is considered a next-generation manufacturing process for the production of microscale components; however, the narrow range of suitable materials, which include mainly polymers, is a critical issue that limits the application of this process to functional inorganic materials. Herein, we develop a generalised microscale 3D printing method for the production of purely inorganic nanocrystal-based porous materials. Our process is designed to solidify all-inorganic nanocrystals via immediate dispersibility control and surface linking-induced interconnection in the nonsolvent linker bath and thereby creates multibranched gel networks. The process works with various inorganic materials, including metals, semiconductors, magnets, oxides, and multi-materials, not requiring organic binders or stereolithographic equipment. Filaments with a diameter of sub-10 µm are printed into designed complex 3D microarchitectures, which exhibit full nanocrystal functionality and high specific surface areas as well as hierarchical porous structures. This approach provides the platform technology for designing functional inorganics-based porous materials.

3.
JACS Au ; 2(10): 2307-2315, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36311835

RESUMO

Molecular and nanoscale amphiphiles have been extensively studied as building blocks for organizing macroscopic matter through specific and local interactions. Among various amphiphiles, inorganic Janus nanoparticles have attracted a lot of attention owing to their ability to impart multifunctionalities, although the programmability to achieve complicated self-assembly remains a challenge. Here, we synthesized matchstick-shaped Janus nano-surfactants that mimic organic surfactant molecules and studied their programmable self-assembly. High amphiphilicity was achieved through the hard-soft acid-base-based ligand-exchange reaction with strong selectivity on the surface of nano-matchsticks consisting of Ag2S heads and CdS stems. The obtained nano-surfactants spontaneously assembled into diverse ordered structures such as lamellar, curved, wrinkled, cylindrical, and micellar structures depending on the vertical asymmetry and the interfacial tension controlled by their geometry and surface ligands. The correlation between the phase selectivity of suprastructures and the characteristics of nano-surfactants is discussed. This study realized the molecular amphiphile-like programmability of inorganic Janus nanostructures in self-assembly with the precise control on the surface chemistry.

4.
Nat Commun ; 13(1): 5262, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071063

RESUMO

Optical three-dimensional (3D) printing techniques have attracted tremendous attention owing to their applicability to mask-less additive manufacturing, which enables the cost-effective and straightforward creation of patterned architectures. However, despite their potential use as alternatives to traditional lithography, the printable materials obtained from these methods are strictly limited to photocurable resins, thereby restricting the functionality of the printed objects and their application areas. Herein, we report a generalised direct optical printing technique to obtain functional metal chalcogenides via digital light processing. We developed universally applicable photocurable chalcogenidometallate inks that could be directly used to create 2D patterns or micrometre-thick 2.5D architectures of various sizes and shapes. Our process is applicable to a diverse range of functional metal chalcogenides for compound semiconductors and 2D transition-metal dichalcogenides. We then demonstrated the feasibility of our technique by fabricating and evaluating a micro-scale thermoelectric generator bearing tens of patterned semiconductors. Our approach shows potential for simple and cost-effective architecturing of functional inorganic materials.

5.
Nanoscale ; 12(19): 10498-10504, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32391820

RESUMO

Herein, we report for the first time the successful preparation of thiometallate-based precursors for use in a bottom-up synthetic process of supported Pt and PtNi nanoparticle catalyst. This precursor enabled the monodisperse synthesis of supported Pt nanoparticles and the in situ formation of S, which were caught directly in a collection system by the nanoparticle synthetic processes consisting of impregnation and thermal processes. S is proven to act as a capping agent in generating highly stable nanoparticles with the size ranging from 2 nm to 3 nm and further favors the formation of monodispersed particles by solid-state digestive ripening. The proposed synthetic methodology can be applied to high-quality PtNi alloy nanoparticle systems. The current route is readily scalable, and multi-gram quantities can be prepared. The prepared carbon-supported Pt and PtNi nanoparticles were characterized as electrocatalysts for the oxygen reduction reaction and exhibited superior performance and durability to commercial Pt/C.

6.
ACS Appl Mater Interfaces ; 11(12): 11824-11833, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30843681

RESUMO

Nanoparticle/graphene hybrid composites have been of great interest in various disciplines due to their unique synergistic physicochemical properties. In this study, we report a facile and generalized synthesis method for preparing nanoparticle/exfoliated graphene (EG) composites by tailored electrostatic interactions. EG was synthesized by an electrochemical method, which produced selectively oxidized graphene sheets at the edges and grain boundaries. These EG sheets were further conjugated with polyethyleneimine to provide positive charges at the edges. The primary organic ligands of the colloidal nanoparticles were exchanged with Cl- or MoS42- anions, generating negatively charged colloidal nanoparticles in polar solvents. By simple electrostatic interactions between the EG and nanoparticles in a solution, nanoparticles were controllably assembled at the edges of the EG. Furthermore, the generality of this process was verified for a wide range of nanoparticles, such as semiconductors, metals, and magnets, on the EG. As a model application, designed composites with size-controlled FeCo nanoparticle/EG were utilized as electromagnetic interference countermeasure materials that showed a size-dependent shift of the frequency ranges on the electromagnetic absorption properties. The current generalized process will offer great potential for the large-scale production of well-designed graphene nanocomposites for electronic and energy applications.

7.
Small ; 15(5): e1804426, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30624025

RESUMO

Porous semiconductors attract great interest due to their unique structural characteristics of high surface area as well as their intrinsic optical and electronic properties. In this study, synthesis of inorganic-organic 2D CdSe slabs-diaminooctane (DAO) porous quantum net structures is demonstrated. It is found that the hybrid 2D CdSe-DAO lamellar structures are disintegrated into porous net structures, maintaining an ultrathin thickness of ≈1 nm in CdSe slabs. Furthermore, the CdSe slabs in quantum nets show the highly shifted excitonic transition in the absorption spectrum, demonstrating their strongly confined electronic structures. The possible formation mechanism of this porous structure is investigated with the control experiments of the synthesis using n-alkyldiamines with various hydrocarbon chain lengths and ligand exchange of DAO with oleylamine. It is suggested that a strong van der Waals interaction among long chain DAO may exert strong tensile stress on the CdSe slabs, eventually disintegrating slabs. The thermal decomposition of CdSe-DAO quantum nets is further studied to form well-defined CdSe nanorods. It is believed that the current CdSe-DAO quantum nets will offer a new type of porous semiconductors nanostructures under a strong quantum-confinement regime, which can be applied to various technological areas of catalysts, electronics, and optoelectronics.

8.
ACS Appl Mater Interfaces ; 9(22): 19143-19151, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28508649

RESUMO

Electronically doped nanoparticles formed by incorporation of impurities have been of great interest because of their controllable electrical properties. However, the development of a strategy for n-type or p-type doping on sub-10 nm-sized nanoparticles under the quantum confinement regime is very challenging using conventional processes, owing to the difficulty in synthesis. Herein, we report the colloidal chemical synthesis of sub-10 nm-sized tellurium (Te)-doped Bismuth (Bi) nanoparticles with precisely controlled Te content from 0 to 5% and systematically investigate their low-temperature charge transport and thermoelectric properties. Microstructural characterization of nanoparticles demonstrates that Te ions are successfully incorporated into Bi nanoparticles rather than remaining on the nanoparticle surfaces. Low-temperature Hall measurement results of the hot-pressed Te-doped Bi-nanostructured materials, with grain sizes ranging from 30 to 60 nm, show that the charge transport properties are governed by the doping content and the related impurity and nanoscale grain boundary scatterings. Furthermore, the low-temperature thermoelectric properties reveal that the electrical conductivity and Seebeck coefficient expectedly change with the Te content, whereas the thermal conductivity is significantly reduced by Te doping because of phonon scattering at the sites arising from impurities and nanoscale grain boundaries. Accordingly, the 1% Te-doped Bi sample exhibits a higher figure-of-merit ZT by ∼10% than that of the undoped sample. The synthetic strategy demonstrated in this study offers the possibility of electronic doping of various quantum-confined nanoparticles for diverse applications.

9.
Nat Commun ; 7: 13403, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27834369

RESUMO

Output power of thermoelectric generators depends on device engineering minimizing heat loss as well as inherent material properties. However, the device engineering has been largely neglected due to the limited flat or angular shape of devices. Considering that the surface of most heat sources where these planar devices are attached is curved, a considerable amount of heat loss is inevitable. To address this issue, here, we present the shape-engineerable thermoelectric painting, geometrically compatible to surfaces of any shape. We prepared Bi2Te3-based inorganic paints using the molecular Sb2Te3 chalcogenidometalate as a sintering aid for thermoelectric particles, with ZT values of 0.67 for n-type and 1.21 for p-type painted materials that compete the bulk values. Devices directly brush-painted onto curved surfaces produced the high output power of 4.0 mW cm-2. This approach paves the way to designing materials and devices that can be easily transferred to other applications.

10.
J Phys Chem Lett ; 7(18): 3627-35, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27571033

RESUMO

We report a strategy toward the synthesis of colloidal nanocrystals capped with inorganic molybdenum and tungsten sulfide ligands. MoS4(2-) and WS4(2-) thiometalates were utilized to replace organic ligands capping a wide range of nanocrystals such as metals, semiconductors, and well-conserved primary properties of nanocrystals in polar media. Especially, MoS4(2-)- and WS4(2-)-capped CdSe nanocryatals showed the dramatic enhancement of photoluminescence properties by the photo-oxidation treatment, which originated from the preferential formation of MoSxOy layers on the CdSe surface. The highest quantum yield reached up to 51%. Furthermore, we studied the charge-transport properties of MoS4(2-)-capped PbS nanocryatals by the fabrication of a field-effect transistor and photodetectors. Finally, MoS4(2-)- and WS4(2-)-capped nanocrystals were used for the production of two-dimensional MoS2 and WS2 thin layers on nanostructures by heat treatment. Such versatility of these thiometalate ligands offers an additional degree of control over the functionality of nanocrystals for optoelectronic and catalytic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...