Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Mol Med ; 56(5): 1164-1177, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38689088

RESUMO

Recent evidence of gut microbiota dysbiosis in the context of psoriasis and the increased cooccurrence of inflammatory bowel disease and psoriasis suggest a close relationship between skin and gut immune responses. Using a mouse model of psoriasis induced by the Toll-like receptor (TLR) 7 ligand imiquimod, we found that psoriatic dermatitis was accompanied by inflammatory changes in the small intestine associated with eosinophil degranulation, which impaired intestinal barrier integrity. Inflammatory responses in the skin and small intestine were increased in mice prone to eosinophil degranulation. Caco-2 human intestinal epithelial cells were treated with media containing eosinophil granule proteins and exhibited signs of inflammation and damage. Imiquimod-induced skin and intestinal changes were attenuated in eosinophil-deficient mice, and this attenuation was counteracted by the transfer of eosinophils. Imiquimod levels and the distribution of eosinophils were positively correlated in the intestine. TLR7-deficient mice did not exhibit intestinal eosinophil degranulation but did exhibit attenuated inflammation in the skin and small intestine following imiquimod administration. These results suggest that TLR7-dependent bidirectional skin-to-gut communication occurs in psoriatic inflammation and that inflammatory changes in the intestine can accelerate psoriasis.


Assuntos
Degranulação Celular , Modelos Animais de Doenças , Eosinófilos , Imiquimode , Intestino Delgado , Psoríase , Receptor 7 Toll-Like , Animais , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/genética , Psoríase/patologia , Psoríase/metabolismo , Camundongos , Eosinófilos/metabolismo , Eosinófilos/imunologia , Humanos , Intestino Delgado/patologia , Intestino Delgado/metabolismo , Pele/patologia , Pele/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Camundongos Knockout , Células CACO-2 , Glicoproteínas de Membrana
2.
Lupus ; 30(9): 1427-1437, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34013817

RESUMO

BACKGROUND: Tissue resident memory T cells (TRMs) persist long-term in peripheral tissues without recirculation, triggering an immediate protective inflammatory state upon the re-recognition of the antigen. Despite evidence incriminating the dysregulation of TRMs in autoimmune diseases, few studies have examined their expression in cutaneous lupus erythematosus (CLE). OBJECTIVES: We aimed to examine whether there are differences among TRM populations in CLE depending on different clinical conditions, such as the CLE subtype or association with systemic lupus erythematosus, and to determine the effect of type I interferon (IFN) on the development of TRMs in CLE. METHODS: CLE disease activity was evaluated using the Cutaneous Lupus Erythematosus Disease Area and Severity Index. The expression of the TRM markers CD69 and CD103 in CLE lesions was evaluated by immunofluorescence. Flow cytometry was performed on peripheral blood mononuclear cells after IFNα treatment. RESULTS: The number of TRMs expressing either CD69 or CD103 was significantly higher in CLE lesions than in control skin; however, it was not significantly different between discoid lupus erythematosus and subacute CLE, or dependent on the presence of concomitant systemic lupus. Lesional severity was not correlated with an increase in TRMs in CLE. IFNα treatment induced a conspicuous increase in CD69 expression in skin-homing T cells, more profoundly in CD4+ T cells than in CD8+ T cells. CONCLUSIONS: Skin TRMs, either CD69 or CD103-positive cells, showed increased levels in the lesional skin of CLE, and IFNα increased the expression of CD69 in T cells.


Assuntos
Interferon-alfa/imunologia , Lúpus Eritematoso Cutâneo/imunologia , Células T de Memória/imunologia , Pele/imunologia , Adulto , Antígenos CD/biossíntese , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/biossíntese , Antígenos de Diferenciação de Linfócitos T/imunologia , Feminino , Humanos , Cadeias alfa de Integrinas/biossíntese , Cadeias alfa de Integrinas/imunologia , Interferon-alfa/farmacologia , Lectinas Tipo C/biossíntese , Lectinas Tipo C/imunologia , Lúpus Eritematoso Discoide/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
3.
Sci Rep ; 8(1): 9894, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29967467

RESUMO

Accumulating data have indicated a fundamental role of eosinophils in regulating adipose tissue homeostasis. Here, we performed whole-genome RNA sequencing of the small intestinal tract, which suggested the presence of impaired lipid metabolism in eosinophil-deficient ΔdblGATA mice. ΔdblGATA mice fed a high-fat diet (HFD) showed reduced body fat mass, impaired enlargement of adipocytes, decreased expression of adipogenic genes, and developed glucose intolerance. HFD induced accumulation of eosinophils in the perigonadal white adipose tissue. Concordantly, adipocyte-differentiated 3T3-L1 cells promoted the migration of eosinophils through the expression of CCL11 (eotaxin-1) and likely promoted their survival through the expression of interleukin (IL)-3, IL-5, and granulocyte-macrophage colony-stimulating factor. HFD-fed ΔdblGATA mice showed increased infiltration of macrophages, CD4+ T-cells, and B-cells, increased expression of interferon-γ, and decreased expression of IL-4 and IL-13 in white adipose tissue. Interferon-γ treatment significantly decreased lipid deposition in adipocyte-differentiated 3T3-L1 cells, while IL-4 treatment promoted lipid accumulation. Notably, HFD-fed ΔdblGATA mice showed increased lipid storage in the liver as compared with wild-type mice. We propose that obesity promotes the infiltration of eosinophils into adipose tissue that subsequently contribute to the metabolic homeostasis by promoting adipocyte maturation.


Assuntos
Adipócitos/patologia , Eosinófilos/patologia , Obesidade/patologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo Branco/patologia , Animais , Diferenciação Celular , Quimiocina CCL11/genética , Quimiocina CCL11/metabolismo , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/genética , Eosinófilos/metabolismo , Fatores de Transcrição GATA/genética , Teste de Tolerância a Glucose , Interferon gama/farmacologia , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Obesidade/etiologia , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...