Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0307835, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39052593

RESUMO

Cruise ships are distinguished as special passenger ships, transporting passengers to various ports and giving importance to comfort. High comfort can attract lots of passengers and generate substantial profits. Vibration and noise are the most important indicators for assessing the comfort of cruise ships. Existing methods for analyzing vibration and noise data have shown limitations in uncovering essential information and discerning critical disparities in vibration and noise levels across different ship districts. Conversely, the rapid development in machine learning present an opportunity to leverage sophisticated algorithms for a more insightful examination of vibration and noise aboard cruise ships. This study designed a machine learning-driven approach to analyze the vibration and noise data. Drawing data from China's first large-scale cruise ship, encompassing 127 noise samples, this study sets up a classification task, where decks were assigned as labels and frequencies served as features. Essential information was extracted by investigating this problem. Several machine learning algorithms, including feature ranking, selection, and classification algorithms, were adopted in this method. One or two essential noise frequencies related to each of the decks, except the 10th deck, were obtained, which were partly validated by the traditional statistical methods. Such findings were helpful in reducing and controlling the vibration and noise in cruise ships. Furthermore, the study develops a classifier to distinguish noise samples, which utilizes random forest as the classification algorithm with eight optimal frequency features identified by LightGBM. This classifier yielded a Matthews correlation coefficient of 0.3415. This study gives a new direction for investigating vibration and noise in ships.


Assuntos
Aprendizado de Máquina , Navios , Vibração , Algoritmos , Ruído dos Transportes , Humanos , China
2.
Cell Mol Life Sci ; 81(1): 325, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39079969

RESUMO

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. The inflammatory cytokine storm causes systemic organ damage, especially acute lung injury in sepsis. In this study, we found that the expression of S-phase kinase-associated protein 2 (Skp2) was significantly decreased in sepsis-induced acute lung injury (ALI). Sepsis activated the MEK/ERK pathway and inhibited Skp2 expression in the pulmonary epithelium, resulting in a reduction of K48 ubiquitination of solute carrier family 3 member 2 (SLC3A2), thereby impairing its membrane localization and cystine/glutamate exchange function. Consequently, the dysregulated intracellular redox reactions induced ferroptosis in pulmonary epithelial cells, leading to lung injury. Finally, we demonstrated that intravenous administration of Skp2 mRNA-encapsulating lipid nanoparticles (LNPs) inhibited ferroptosis in the pulmonary epithelium and alleviated lung injury in septic mice. Taken together, these data provide an innovative understanding of the underlying mechanisms of sepsis-induced ALI and a promising therapeutic strategy for sepsis.


Assuntos
Lesão Pulmonar Aguda , Ferroptose , Camundongos Endogâmicos C57BL , Proteínas Quinases Associadas a Fase S , Sepse , Ubiquitinação , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/etiologia , Sepse/metabolismo , Sepse/complicações , Sepse/patologia , Animais , Camundongos , Humanos , Masculino , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Pulmão/patologia , Pulmão/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética
3.
Clin Ther ; 46(6): 490-498, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38824080

RESUMO

PURPOSE: To identify factors and indicators that affect chronic pain and pain relief, and to develop predictive models using machine learning. METHODS: We analyzed the data of 67,028 outpatient cases and 11,310 valid samples with pain from a large retrospective cohort. We used decision tree, random forest, AdaBoost, neural network, and logistic regression to discover significant indicators and to predict pain and treatment relief. FINDINGS: The random forest model had the highest accuracy, F1 value, precision, and recall rates for predicting pain relief. The main factors affecting pain and treatment relief included body mass index, blood pressure, age, body temperature, heart rate, pulse, and neutrophil/lymphocyte × platelet ratio. The logistic regression model had high sensitivity and specificity for predicting pain occurrence. IMPLICATIONS: Machine learning models can be used to analyze the risk factors and predictors of chronic pain and pain relief, and to provide personalized and evidence-based pain management.


Assuntos
Dor Crônica , Aprendizado de Máquina , Humanos , Estudos Retrospectivos , Dor Crônica/diagnóstico , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Resultado do Tratamento , Idoso , Manejo da Dor/métodos , Modelos Logísticos , Fatores de Risco , Árvores de Decisões
4.
J Colloid Interface Sci ; 668: 335-342, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38678888

RESUMO

Membrane receptors perform a diverse range of cellular functions, accounting for more than half of all drug targets. The mechanical microenvironment regulates cell behaviors and phenotype. However, conventional analysis methods of membrane receptors often ignore the effects of the extracellular matrix stiffness, failing to reveal the heterogeneity of cell membrane receptors expression. Herein, we developed an in-situ surface-enhanced Raman scattering (SERS) imaging method to visualize single-cell membrane receptors on substrates with different stiffness. Two SERS substrates, Au@4-mercaptobenzonitrile@Ag@Sgc8c and Au@4-pethynylaniline@Ag@SYL3c, were employed to specifically target protein tyrosine kinase-7 (PTK7) and epithelial cell adhesion molecule (EpCAM), respectively. The polyacrylamide (PA) gels with tunable stiffness (2.5-25 kPa) were constructed to mimic extracellular matrix. The simultaneous SERS imaging of dual membrane receptors on single cancer cells on substrates with different stiffness was achieved. Our findings reveal decreased expression of PTK7 and EpCAM on cells cultured on stiffer substrates and higher migration ability of the cells. The results elucidate the heterogeneity of membrane receptors expression of cells cultured on the substrates with different stiffness. This single-cell analysis method offers an in-situ platform for investigating the impacts of extracellular matrix stiffness on the expression of membrane receptors, providing insights into the role of cell membrane receptors in cancer metastasis.


Assuntos
Molécula de Adesão da Célula Epitelial , Matriz Extracelular , Análise de Célula Única , Análise Espectral Raman , Matriz Extracelular/metabolismo , Humanos , Molécula de Adesão da Célula Epitelial/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Ouro/química , Resinas Acrílicas/química , Prata/química , Propriedades de Superfície , Linhagem Celular Tumoral , Compostos de Anilina/química , Tamanho da Partícula , Moléculas de Adesão Celular
5.
Ann Surg ; 279(4): 588-597, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38456278

RESUMO

OBJECTIVE: To compare the effect of low and standard pneumoperitoneal pressure (PP) on the occurrence of gas embolism during laparoscopic liver resection (LLR). BACKGROUND: LLR has an increased risk of gas embolism. Although animal studies have shown that low PP reduces the occurrence of gas embolism, clinical evidence is lacking. METHODS: This parallel, dual-arm, double-blind, randomized controlled trial included 141 patients undergoing elective LLR. Patients were randomized into standard ("S," 15 mm Hg; n = 70) or low ("L," 10 mm Hg; n = 71) PP groups. Severe gas embolism (≥ grade 3, based on the Schmandra microbubble method) was detected using transesophageal echocardiography and recorded as the primary outcome. Intraoperative vital signs and postoperative recovery profiles were also evaluated. RESULTS: Fewer severe gas embolism cases (n = 29, 40.8% vs n = 47, 67.1%, P = 0.003), fewer abrupt decreases in end-tidal carbon dioxide partial pressure, shorter severe gas embolism duration, less peripheral oxygen saturation reduction, and fewer increases in heart rate and lactate during gas embolization episodes was found in group L than in group S. Moreover, a higher arterial partial pressure of oxygen and peripheral oxygen saturation were observed, and fewer fluids and vasoactive drugs were administered in group L than in group S. In both groups, the distensibility index of the inferior vena cava negatively correlated with central venous pressure throughout LLR, and a comparable quality of recovery was observed. CONCLUSIONS: Low PP reduced the incidence and duration of severe gas embolism and achieved steadier hemodynamics and vital signs during LLR. Therefore, a low PP strategy can be considered a valuable choice for the future LLR.


Assuntos
Embolia Aérea , Laparoscopia , Animais , Humanos , Dióxido de Carbono/efeitos adversos , Embolia Aérea/etiologia , Embolia Aérea/prevenção & controle , Embolia Aérea/diagnóstico , Laparoscopia/efeitos adversos , Laparoscopia/métodos , Fígado/cirurgia , Pneumoperitônio Artificial/efeitos adversos
6.
Dig Dis Sci ; 69(4): 1214-1227, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38376789

RESUMO

BACKGROUND: HSK3486 (ciprofol), a new candidate drug similar to propofol, exerts sedative and hypnotic effects through gamma-aminobutyric acid type A receptors; however, its potential role in colorectal cancer is currently unknown. AIMS: This study aimed to evaluate the effects of HSK3486 on colorectal cancer cell proliferation. METHODS: Imaging was performed to detect reactive oxygen species and mitochondrial membrane potential. Western blotting was used to determine the expression of target signals. The HSK3486 molecular mechanism was investigated through ATPase inhibitory factor 1 knockdown and xenograft model experiments to assess mitochondrial function in colorectal cancer cells. RESULTS: Cell Counting Kit-8 and Annexin V/propidium iodide double staining assays showed that HSK3486 inhibited colorectal cancer cell proliferation in a concentration-dependent manner. In addition, HSK3486 treatment increased the expression of B-cell lymphoma-2-associated X, cleaved caspase 3, and cleaved poly (ADP-ribose) polymerase, whereas myeloid cell leukemia-1 and B-cell lymphoma 2 expression decreased. HSK3486 promoted mitochondrial dysfunction by inducing ATPase inhibitor factor 1 expression. Furthermore, HSK3486 promoted oxidative stress, as shown by the increase in reactive oxygen species and lactate dehydrogenase levels, along with a decrease in mitochondrial membrane potential and ATP levels. ATPase inhibitor factor 1 small interfering RNA pretreatment dramatically increased the mitochondrial membrane potential and tumor size in a xenograft model following exposure to HSK3486. CONCLUSION: Collectively, our findings revealed that HSK3486 induces oxidative stress, resulting in colorectal cancer cell apoptosis, making it a potential candidate therapeutic strategy for colorectal cancer.


Assuntos
Apoptose , Neoplasias Colorretais , Humanos , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Adenosina Trifosfatases/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Potencial da Membrana Mitocondrial , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteína Inibidora de ATPase/efeitos dos fármacos
7.
Foods ; 13(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38397578

RESUMO

In this work, we have developed a composite chitosan film incorporating the Litsea cubeba essential oil (LCEO) and starch with good physical properties, and investigated the effect of coating strawberries with this composite film. The best formula of the LCEO/chitosan/corn starch/glycerol (LCEO/CH/CS/gly) composite films is 0.25% LCEO, 2.75% CH, 0.40% corn starch, and 0.75% glycerol. Coating strawberries with CH/CS/gly film or LCEO/CH/CS/gly films resulted in significantly lower respiration intensity and a slower decay rate, much slower decreases in the firmness, and reductions in the sugar and ascorbic acid content of the fruit during storage (p < 0.05). The coatings also led to a much slower accumulation of malondialdehyde and anthocyanins (p < 0.05). The LCEO/CH/CS/gly film was generally more effective than the CH/CS/gly film; however, the effect was more obvious in the later stages of storage. Thus, coating strawberries with CH/CS/gly film or LCEO/CH/CS/gly film can be a viable method for extending the shelf-life of the fruit.

8.
Cell Death Dis ; 15(1): 8, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38177106

RESUMO

Regulatory T cells (Tregs) are a key determinant for the immunosuppressive and premetastatic niche for cancer progression after surgery resection. However, the precise mechanisms regulating Tregs function during surgical stress-facilitated cancer metastasis remain unknown. This study aims to unravel the mechanisms and explore potential strategies for preventing surgical stress-induced metastasis by targeting NEDD8. Using a surgical stress mouse model, we found that surgical stress results in the increased expression of NEDD8 in Tregs. NEDD8 depletion abrogates postoperative lung metastasis of colon cancer cells by inhibiting Treg immunosuppression and thereby partially recovering CD8+T cell and NK cell-mediated anti-tumor immunity. Furthermore, Treg mitophagy and mitochondrial respiration exacerbated in surgically stressed mice were attenuated by NEDD8 depletion. Our observations suggest that cancer progression may result from surgery-induced enhancement of NEDD8 expression and the subsequent immunosuppressive function of Tregs. More importantly, depleting or inhibiting NEDD8 can be an efficient strategy to reduce cancer metastasis after surgery resection by regulating the function of Tregs.


Assuntos
Neoplasias do Colo , Linfócitos T Reguladores , Animais , Camundongos , Terapia de Imunossupressão , Linfócitos T CD8-Positivos , Tolerância Imunológica , Imunossupressores/metabolismo , Neoplasias do Colo/metabolismo
9.
Ann Bot ; 133(2): 365-378, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38099505

RESUMO

BACKGROUND AND AIMS: Plants can propagate generatively and vegetatively. The type of propagation and the resulting propagule can influence the growth of the plants, such as plant architectural development and pattern of biomass allocation. Potato is a species that can reproduce through both types of propagation: through true botanical seeds and seed tubers. The consequences of propagule type on the plant architectural development and biomass partitioning in potatoes are not well known. We quantified architectural differences between plants grown from these two types of propagules from the same genotype, explicitly analysing branching dynamics above and below ground, and related these differences to biomass allocation patterns. METHODS: A greenhouse experiment was conducted, using potato plants of the same genotype but grown from two types of propagules: true seeds and seed tubers from a plant grown from true seed (seedling tuber). Architectural traits and biomass allocation to different organs were quantified at four developmental stages. Differences between true-seed-grown and seedling-tuber-grown plants were compared at the whole-plant level and at the level of individual stems and branches, including their number, size and location on the plant. KEY RESULTS: A more branched and compact architecture was produced in true-seed-grown plants compared with seedling-tuber-grown plants. The architectural differences between plants grown from true seeds and seedling tubers appeared gradually and were attributed mainly to the divergent temporal-spatial distribution of lateral branches above and below ground on the main axis. The continual production of branches in true-seed-grown plants indicated their indeterminate growth habit, which was also reflected in a slower shift of biomass allocation from above- to below-ground branches, whereas the opposite trend was found in seedling-tuber-grown plants. CONCLUSIONS: In true-seed-grown plants, lateral branching was stronger and determined whole-plant architecture and plant function with regard to light interception and biomass production, compared with seedling-tuber-grown plants. This different role of branching indicates that a difference in preference between clonal and sexual reproduction might exist. The divergent branching behaviours in true-seed-grown and seedling-tuber-grown plants might be regulated by the different intensity of apical dominance, which suggests that the control of branching can depend on the propagule type.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Tubérculos , Fenótipo , Genótipo , Desenvolvimento Vegetal , Plântula
10.
ACS Sens ; 8(11): 4307-4314, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37923556

RESUMO

Matrix metalloproteinase-9 (MMP-9), a proteolytic enzyme, degrades the extracellular matrix and plays a key role in cell communication. However, the real-time monitoring of cell-secreted MMP-9 during cell-cell communication remains a challenge. Herein, we developed a cell-based membrane-anchored surface-enhanced Raman scattering (SERS) biosensor using a Au@4-mercaptobenzonitrile (4-MBN) @Ag@peptide nanoprobe for the monitoring of cell-secreted MMP-9 during cell communication. The multifunctional nanoprobe was created with Au@4-MBN@Ag acting as an interference-free SERS substrate with high enhancement in which the peptide not only serves to anchor the cell membrane but also provides MMP-9-activatable cleaved peptide chains. MMP-9-mediated cleavage resulted in the detachment of the Au@4-MBN@Ag nanoparticles from the cell membrane, thereby decreasing the SERS signals of cancer cells. The cell membrane-anchored SERS biosensor enables the real-time monitoring of cell-secreted MMP-9 during the interaction of MCF-7 and HUVEC cells. This study successfully demonstrates the dynamic change of cell-secreted MMP-9 during the communication between MCF-7 cells and HUVEC cells. The proposed nanoprobe was also utilized to precisely evaluate the breast and hepatoma cancer cell aggressiveness. This study provides a novel strategy for real-time monitoring of MMP-9 secretion during cell communication, which is promising for the investigation of the mechanisms underlying different tumor processes.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Metaloproteinase 9 da Matriz , Prata , Membrana Celular , Peptídeos
11.
Biomed Pharmacother ; 169: 115914, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38000360

RESUMO

Sepsis is a life-threatening systemic inflammatory response syndrome caused by the host imbalanced response to infection. Lung injury is the most common complication of sepsis and one of the leading causes of patient death. Pyroptosis is a specific programmed cell death characterized by the release of inflammatory cytokines. Appropriate pyroptosis can reduce tissue damage and exert a protective effect against infection during sepsis. However, overactivated pyroptosis results in massive cell death, leading to septic shock, multiple organ dysfunction syndrome, and even an increased risk of secondary infection. Recent studies suggest that pyroptosis can interact with and cross-regulate other types of cell death programs to establish a complex network of cell death, which participates in the occurrence and development of septic lung injury. This review will focus on the interactions between pyroptosis and other types of cell death, including apoptosis, necroptosis, PANoptosis, NETosis, autophagy, and ferroptosis, to summarize the role of pyroptosis in sepsis-induced lung injury, and will discuss the potential therapeutic strategies of targeting pyroptosis during sepsis treatment.


Assuntos
Lesão Pulmonar , Sepse , Humanos , Piroptose , Lesão Pulmonar/complicações , Morte Celular , Apoptose , Sepse/complicações , Sepse/metabolismo
12.
Nat Commun ; 14(1): 7766, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012167

RESUMO

Using highly sensitive and selective in situ techniques to investigate the dynamics of intermediates formation is key to better understand reaction mechanisms. However, investigating the early stages of solid-state reactions/transformations is still challenging. Here we introduce in situ fluorescence spectroscopy to observe the evolution of intermediates during a two-step [2 + 2] photocycloaddition process in a coordination polymer platform. The structural changes and kinetics of each step under ultraviolet light irradiation versus time are accompanied by the gradual increase-decrease of intensity and blue-shift of the fluorescence spectra from the crystals. Monitoring the fluorescence behavior using a laser scanning confocal microscope can directly visualize the inhomogeneity of the photocycloaddition reaction in a single crystal. Theoretical calculations allow us to rationalize the fluorescence behavior of these compounds. We provide a convenient strategy for visualizing the solid-state photocycloaddition dynamics using fluorescence spectroscopy and open an avenue for kinetic studies of a variety of fast reactions.

13.
Phys Rev Lett ; 130(12): 126801, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37027865

RESUMO

The increasing miniaturization of electronics requires a better understanding of material properties at the nanoscale. Many studies have shown that there is a ferroelectric size limit in oxides, below which the ferroelectricity will be strongly suppressed due to the depolarization field, and whether such a limit still exists in the absence of the depolarization field remains unclear. Here, by applying uniaxial strain, we obtain pure in-plane polarized ferroelectricity in ultrathin SrTiO_{3} membranes, providing a clean system with high tunability to explore ferroelectric size effects especially the thickness-dependent ferroelectric instability with no depolarization field. Surprisingly, the domain size, ferroelectric transition temperature, and critical strain for room-temperature ferroelectricity all exhibit significant thickness dependence. These results indicate that the stability of ferroelectricity is suppressed (enhanced) by increasing the surface or bulk ratio (strain), which can be explained by considering the thickness-dependent dipole-dipole interactions within the transverse Ising model. Our study provides new insights into ferroelectric size effects and sheds light on the applications of ferroelectric thin films in nanoelectronics.

14.
Cancer Med ; 12(11): 12639-12652, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37081748

RESUMO

BACKGROUND: Exosomes are critical mediators of tumor cell-microenvironment cross talk. However, the mechanisms by which hypoxic Lung adenocarcinoma (LUAD)-derived exosomes modulate macrophage polarization remain largely unknown. The aim of this study was to investigate the effects of hypoxic LUAD-derived exosome on macrophage polarization and explore the underlying molecular mechanism. MATERIALS AND METHODS: LUAD-derived exosomes were isolated, and then confirmed by transmission electron microscopy, nanoparticle tracking analysis, and Western blot. Internalization of exosomes in macrophages was detected by confocal microscope. Gain- and loss-of-function experiments, rescue experiments, and xenograft models were performed to uncover the underlying mechanisms of exosomal miR-1290 induced macrophage polarization in vitro and in vivo. RESULTS: miR-1290 was enriched in hypoxic LUAD cancer cell-derived exosomes and could be transferred to macrophages. Overexpression of miR-1290 in macrophages-induced polarization of M2 phenotype. Luciferase assay verified SOCS3 was the target of miR-1290. Hypoxic LUAD cell-derived exosomal miR-1290 activated the STAT3 signaling pathway by targeting SOCS3 to promote M2 macrophage polarization. CONCLUSION: Hypoxic LUAD cells generate miR-1290-rich exosomes that promote M2 polarization of macrophages. Targeting exosomal miR-1290 may provide a potential immunotherapeutic strategy for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Exossomos , MicroRNAs , Humanos , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina , Adenocarcinoma de Pulmão/patologia , Exossomos/genética , Exossomos/metabolismo , Microambiente Tumoral/genética , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
15.
Front Oncol ; 13: 1097015, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937436

RESUMO

Background: Endometrial cancer (EC) is a common gynecological cancer worldwide and the sixth most common female malignant tumor. A large number of studies conducted through database mining have identified many biomarkers that may be related to survival and prognosis. However, the predictive ability of single-gene biomarkers is not sufficiently accurate. In recent years, tumors have been shown to interact closely with their microenvironment, and tumor-infiltrating immune cells in the tumor microenvironment were associated with therapeutic effects. Furthermore, sequencing technology has evolved and allowed the identification of genetic signatures that may improve prediction results. The purpose of this research was to discover the Cancer Genome Atlas (TCGA) data to evaluate new genetic features that can predict the prognosis of EC. Methods: mRNA expression profiling was analyzed in patients with EC identified in the TCGA database (n = 530). Differentially expressed genes at different stages of EC were screened using the immune cell enrichment score (ImmuneScore). Univariate and multivariate Cox regression analyses was applied to evaluate genes significantly related to overall survival and establish the prognostic risk parameter formula. Kaplan-Meier survival curves and the logarithmic rank method were applied to verify the importance of risk parameters for the prognostic forecast. The accuracy of survival prediction was confirmed using the nomogram and Receiver Operating Characteristic (ROC) curve analysis. The mRNA expression of eight genes were measured by qRT-PCR. According to COX and HR values, NBAT1, a representative gene among 8 genes, was selected for CCK-8 assay, colony formation assay and transwell invasion assay to verify the effect on survival. Results: Eight related genes (NBAT1, GFRA4, PTPRT, DLX4, RANBP3L, UNQ6494, KLRB1, and PRAC1) were discovered to be significantly associated with the overall survival rate. According to these eight-gene signatures, 530 patients with EC were assigned to high- and low-risk subgroups. The prognostic capability of the eight-gene signature was not influenced by other elements. Conclusions: Eight related gene markers were identified using ImmuneScore, which could predict prognosis and survival in patients with EC. These findings provide a basis for understanding the application of biological information in tumors and identifying the poor prognosis of EC.

16.
Curr Neuropharmacol ; 21(9): 1992-2005, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36529923

RESUMO

Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction caused by sepsis that manifests as a range of brain dysfunctions from delirium to coma. It is a relatively common complication of sepsis associated with poor patient prognosis and mortality. The pathogenesis of SAE involves neuroinflammatory responses, neurotransmitter dysfunction, blood-brain barrier (BBB) disruption, abnormal blood flow regulation, etc. Neuroinflammation caused by hyperactivation of microglia is considered to be a key factor in disease development, which can cause a series of chain reactions, including BBB disruption and oxidative stress. Metabolic reprogramming has been found to play a central role in microglial activation and executive functions. In this review, we describe the pivotal role of energy metabolism in microglial activation and functional execution and demonstrate that the regulation of microglial metabolic reprogramming might be crucial in the development of clinical therapeutics for neuroinflammatory diseases like SAE.


Assuntos
Encefalopatias , Encefalopatia Associada a Sepse , Sepse , Humanos , Encefalopatia Associada a Sepse/complicações , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/patologia , Microglia/metabolismo , Doenças Neuroinflamatórias , Sepse/complicações , Barreira Hematoencefálica/metabolismo , Encefalopatias/etiologia , Encefalopatias/patologia
17.
J Adv Res ; 51: 45-57, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36396044

RESUMO

INTRODUCTION: The R-loop is a naturally formed three-strand nucleic acid structure that recently has been reported to participate in multiple biological processes and helped answer some previously unexplained scientific questions. Meiosis process involves multiple chromatin-related events such as DNA double-stranded breaks (DSB) formation, repairing and transcriptional dynamics. OBJECTIVES: Explore the regulatory roles and physiological functions of R-loops in the mammalian meiosis process. METHODS: In our study, using genome-wide S9.6 CUT & Tag seq, we first mapped the genomic distribution and dynamic changes of R-loop during the meiotic process in mice, from spermatogonia to secondary spermatocytes. And we further explore the role of R-loop in physiological conditions by constructing conditional knockout mice of Rnaseh1, which deleted the R-loop endonuclease before meiosis entry. RESULTS: R-loop predominantly distributes at promoter-related regions and varies across different meiotic stages. By joint analysis with the corresponding transcriptome, we found that the R-loop was closely related to transcription during the meiotic process. The high frequency of promoter-related R-loop in meiotic cells is usually accompanied by high transcription activity, and we further verified this in the leptotene/zygotene to the pachytene transition process. Moreover, the lack of RNase H1 caused sterility in male mice with R-loop accumulation and abnormal DSB repair in spermatocytes. Further analysis showed that abnormal R-loop accumulation in the leptotene/zygotene stages influenced transcriptional regulation in the pachytene stage. CONCLUSION: The mutual regulation of the R-loop and transcription plays an essential role in spermatogenesis. And R-loop is also important for the normal repair process of DSB during meiosis.


Assuntos
Quebras de DNA de Cadeia Dupla , Estruturas R-Loop , Masculino , Camundongos , Animais , Meiose/genética , Espermatogênese/genética , Espermatócitos , Camundongos Knockout , Mamíferos/genética
18.
Cancer Med ; 12(4): 4521-4529, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36082960

RESUMO

BACKGROUND AND AIMS: Diagnosis of leptomeningeal metastasis (LM) is challenging. In our previous study, CEACAM6 mRNA was found to be highly expressed in the circulating tumor cells of cerebrospinal fluid (CSF) from patients with lung adenocarcinoma with LM (LUAD-LM). The aim of this study was to identify whether CEACAM6 could be used as a biomarker for LUAD-LM. MATERIALS AND METHODS: The level of CEACAM6 was determined by enzyme-linked immunosorbent assay (ELISA) in CSF from 40 LUAD-LM and 44 normal controls, and additional serum samples from 138 LUAD patients, including 12 LUAD-LM patients, and 30 healthy controls. Carcinoembryonic antigen (CEA), cytokeratin 19 fragment (CYFRA 21-1) and neuron-specific enolase (NSE) levels in the CSF and sera were detected by chemiluminescent immunoassay. Receiver operating characteristic curve was plotted to evaluate the diagnostic performance for LUAD-LM. RESULTS: CSF CEACAM6 level was higher in LUAD-LM than that in normal controls. In serum, LUAD patients had a higher level of CAECAM6 than healthy controls, and LM patients had the highest level among them. Serum CEACAM6 had a higher AUC than CEA in differentiating LM from non-LM in LUAD patients (0.95 vs. 0.64, p < 0.001). CONCLUSION: CEACAM6 may serve as a potential biomarker in diagnosing LUAD-LM.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Antígeno Carcinoembrionário , Biomarcadores Tumorais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/diagnóstico , Antígenos CD , Moléculas de Adesão Celular/genética , Proteínas Ligadas por GPI/genética
19.
Metab Brain Dis ; 38(1): 255-267, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36445630

RESUMO

The effect of Celastrol on cerebral ischemia-reperfusion remains unknown. The study aims to explore the role of circular RNA DLGAP4 (circDLGAP4) in cerebral ischemia-reperfusion and the underlying mechanism. Ischemia-reperfusion (I/R) injury of human brain microvascular endothelial cells (HBMECs) was induced by oxygen-glucose deprivation and reoxygenation (OGD/R). Reverse transcription quantitative real-time PCR (RT-qPCR) and western blotting analysis were performed to detect the expression of circDLGAP4, microRNA-6085 (miR-6085), growth differentiation factor 11 (GDF11), B-cell lymphoma-2 (BCL2) and BCL2-associated x protein (BAX). Cell viability, proliferation, and apoptosis were analyzed by cell counting kit-8, 5-Ethynyl-2'-deoxyuridine and flow cytometry analysis. Oxidative stress was analyzed by evaluating the levels of Malondialdehyde (MDA) and Reactive Oxygen Species (ROS) and the activity of Superoxide Dismutase (SOD). The associations among circDLGAP4, miR-6085 and GDF11 were identified by dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pull-down assays. Celastrol reduced OGD/R-induced inhibition of circDLGAP4 expression in HBMECs. Celastrol treatment protected HBMECs from OGD/R-induced cell proliferation inhibition and apoptosis and oxidative stress promotion; however, circDLGAP4 depletion attenuated these effects. CircDLGAP4 acted as a sponge for miR-6085, and miR-6085 mimics restored circDLGAP4-mediated effects in OGD/R-stimulated HBMECs. In addition, GDF11 was identified as a targte of miR-6085, and participated in the regulation of miR-6085 to OGD/R-induced HBMEC damage. Further, circDLGAP4 absence inhibited GDF11 expression by interacting with miR-6085 under Celastrol treatment. Celastrol ameliorated OGD/R-induced HBMEC apoptosis and oxidative stress by circDLGAP4/miR-6085/GDF11 pathway, supporting the use of Celastrol as a therapeutic agent for cerebral infarction.


Assuntos
Isquemia Encefálica , MicroRNAs , Traumatismo por Reperfusão , Humanos , Oxigênio , RNA Circular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais/metabolismo , Glucose , Encéfalo/metabolismo , Traumatismo por Reperfusão/metabolismo , Apoptose , Proteínas Morfogenéticas Ósseas/metabolismo , Fatores de Diferenciação de Crescimento/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA