Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 194: 106809, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39038499

RESUMO

Bifidobacterium animalis subsp. lactis BLa80 is a new probiotic strain with extensive applications in food products both domestically and internationally. Given the rising consumption of this probiotic, its safety assessment is increasingly crucial in the food industry. This study evaluates the safety of strain BLa80 using a combination of in vitro and in vivo assays along with genomic analysis. Methods included exposing the strain to artificial gastric and intestinal fluids, as well as a medium containing bile salts, to stimulate human digestive conditions. The strain showed high tolerance to gastric fluid at pH of 2.5 and to 0.3 % bile salts. It maintained a 99.92 % survival rate in intestinal fluid. Additional tests assessed hemolytic activity, antibiotic susceptibility (revealing sensitivity to 7 antibiotics), and biogenic amine production using HPLC-ELSD, confirming the absence of histamine, and other harmful amines. Bile salt hydrolase activity was demonstrated qualitatively, and metabolic byproducts were quantitatively analyzed using a D-/l-lactic acid assay kit, showing that BLa80 produces 1.48 mg/mL of l-lactic acid and no harmful d-lactic acid. Genomic analysis confirmed the absence of virulence or pathogenicity genes, and a 90-day oral toxicity study in rats confirmed no toxic effects at various doses. Overall, these findings support the safety classification of the strain BLa80.


Assuntos
Antibacterianos , Bifidobacterium animalis , Ácidos e Sais Biliares , Probióticos , Animais , Ratos , Ácidos e Sais Biliares/metabolismo , Antibacterianos/farmacologia , Bifidobacterium animalis/genética , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Ácido Láctico/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Aminas Biogênicas/metabolismo , Humanos , Masculino , Hemólise , Suco Gástrico , Feminino
2.
PLoS Biol ; 22(5): e3002628, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38814940

RESUMO

The peptidoglycan (PG) layer is a critical component of the bacterial cell wall and serves as an important target for antibiotics in both gram-negative and gram-positive bacteria. The hydrolysis of septal PG (sPG) is a crucial step of bacterial cell division, facilitated by FtsEX through an amidase activation system. In this study, we present the cryo-EM structures of Escherichia coli FtsEX and FtsEX-EnvC in the ATP-bound state at resolutions of 3.05 Å and 3.11 Å, respectively. Our PG degradation assays in E. coli reveal that the ATP-bound conformation of FtsEX activates sPG hydrolysis of EnvC-AmiB, whereas EnvC-AmiB alone exhibits autoinhibition. Structural analyses indicate that ATP binding induces conformational changes in FtsEX-EnvC, leading to significant differences from the apo state. Furthermore, PG degradation assays of AmiB mutants confirm that the regulation of AmiB by FtsEX-EnvC is achieved through the interaction between EnvC-AmiB. These findings not only provide structural insight into the mechanism of sPG hydrolysis and bacterial cell division, but also have implications for the development of novel therapeutics targeting drug-resistant bacteria.


Assuntos
Trifosfato de Adenosina , Divisão Celular , Proteínas de Escherichia coli , Escherichia coli , Peptidoglicano , Peptidoglicano/metabolismo , Hidrólise , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Escherichia coli/genética , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Parede Celular/metabolismo , Conformação Proteica , Modelos Moleculares , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , Proteínas da Membrana Bacteriana Externa , Transportadores de Cassetes de Ligação de ATP , Regulador de Condutância Transmembrana em Fibrose Cística , Lipoproteínas , Proteínas de Ciclo Celular
3.
Front Microbiol ; 14: 1239537, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808302

RESUMO

Lipopolysaccharide (LPS) is essential for most gram-negative bacteria and plays an important role in serum resistance, pathogenesis, drug resistance, and protection from harsh environments. The outer core oligosaccharide of LPS is involved in bacterial recognition and invasion of host cells. The D-galactosyltransferase WaaB is responsible for the addition of D-galactose to the outer core oligosaccharide of LPS, which is essential for Salmonella typhimurium invasion. Here we report the first crystal structures of WaaB and WaaB in complex with UDP to resolutions of 1.8 and 1.9 Å, respectively. Mutagenesis and enzyme activity assays confirmed that residues V186, K195, I216, W243, E276, and E269 of WaaB are essential for the binding and hydrolysis of UDP-galactose. The elucidation of the catalytic mechanism of WaaB is of great importance and could potentially be used for the design of novel therapeutic reagents.

4.
ACS Appl Mater Interfaces ; 15(22): 26328-26339, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37219911

RESUMO

Carrier-mediated intracellular protein delivery holds tremendous application potential in biology and medicine. The ideal carrier should be well-controlled and cost-effective and able to facilitate robust delivery of diverse types of proteins into the target cells, thus ensuring efficacy in different application scenarios. Here, we describe a modular chemistry approach for generating a small-molecule amphiphile molecular library based on the Ugi four-component reaction under one-pot and mild conditions. Then, two different types of amphiphiles with the dimeric or trimeric architecture were obtained for intracellular protein delivery through in vitro screening test. Depending on the precise adjustment of the hydrophobic tails of amphiphiles, the optimized trimeric amphiphile (TA) exhibited more superior protein loading performance and a higher efficiency of delivering proteins into cells through the endocytosis pathway and subsequent endosomal escape. Furthermore, we demonstrated that the TA could be a universal delivery carrier capable of transporting broad-spectrum proteins, especially for the hard-to-deliver native antibodies, into the cytosol. Overall, we describe a robust amphiphile platform with a well-defined and cost-effective design to improve the cytosolic protein delivery capacity, exhibiting great promise for developing intracellular protein-based therapeutics.


Assuntos
Portadores de Fármacos , Preparações Farmacêuticas , Proteínas , Tensoativos , Portadores de Fármacos/química , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA