Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(3): 112275, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36943864

RESUMO

Enhancing chemosensitivity is one of the largest unmet medical needs in cancer therapy. Cyclic GMP-AMP synthase (cGAS) connects genome instability caused by platinum-based chemotherapeutics to type I interferon (IFN) response. Here, by using a high-throughput small-molecule microarray-based screening of cGAS interacting compounds, we identify brivanib, known as a dual inhibitor of vascular endothelial growth factor receptor and fibroblast growth factor receptor, as a cGAS modulator. Brivanib markedly enhances cGAS-mediated type I IFN response in tumor cells treated with platinum. Mechanistically, brivanib directly targets cGAS and enhances its DNA binding affinity. Importantly, brivanib synergizes with cisplatin in tumor control by boosting CD8+ T cell response in a tumor-intrinsic cGAS-dependent manner, which is further validated by a patient-derived tumor-like cell clusters model. Taken together, our findings identify cGAS as an unprecedented target of brivanib and provide a rationale for the combination of brivanib with platinum-based chemotherapeutics in cancer treatment.


Assuntos
Alanina , Antineoplásicos , Neoplasias , Nucleotidiltransferases , Triazinas , Humanos , Ensaios de Triagem em Larga Escala , Alanina/análogos & derivados , Nucleotidiltransferases/metabolismo , Interferons/imunologia , Cisplatino/administração & dosagem , Antineoplásicos/administração & dosagem , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Células Tumorais Cultivadas/efeitos dos fármacos , Neoplasias/tratamento farmacológico
2.
Antib Ther ; 6(1): 13-29, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36683767

RESUMO

Developability refers to the likelihood that an antibody candidate will become a manufacturable, safe and efficacious drug. Although the safety and efficacy of a drug candidate will be well considered by sponsors and regulatory agencies, developability in the narrow sense can be defined as the likelihood that an antibody candidate will go smoothly through the chemistry, manufacturing and control (CMC) process at a reasonable cost and within a reasonable timeline. Developability in this sense is the focus of this review. To lower the risk that an antibody candidate with poor developability will move to the CMC stage, the candidate's developability-related properties should be screened, assessed and optimized as early as possible. Assessment of developability at the early discovery stage should be performed in a rapid and high-throughput manner while consuming small amounts of testing materials. In addition to monoclonal antibodies, bispecific antibodies, multispecific antibodies and antibody-drug conjugates, as the derivatives of monoclonal antibodies, should also be assessed for developability. Moreover, we propose that the criterion of developability is relative: expected clinical indication, and the dosage and administration route of the antibody could affect this criterion. We also recommend a general screening process during the early discovery stage of antibody-derived therapeutics. With the advance of artificial intelligence-aided prediction of protein structures and features, computational tools can be used to predict, screen and optimize the developability of antibody candidates and greatly reduce the risk of moving a suboptimal candidate to the development stage.

3.
PLoS One ; 15(3): e0228221, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32155151

RESUMO

Inflammatory bowel diseases (IBD) are complex, multifactorial disorders characterized by chronic relapsing intestinal inflammation. IBD is diagnosed around 1 in 1000 individuals in Western countries with globally increasing incident rates. Association studies have identified hundreds of genes that are linked to IBD and potentially regulate its pathology. The further dissection of the genetic network underlining IBD pathogenesis and pathophysiology is hindered by the limited capacity to functionally characterize each genetic association, including generating knockout animal models for every associated gene. Cutting-edge CRISPR/Cas9-based technology may transform the field of IBD research by efficiently and effectively introducing genetic alterations. In the present study, we used CRISPR/Cas9-based technologies to genetically modify hematopoietic stem cells. Through cell sorting and bone marrow transplantation, we established a system to knock out target gene expression by over 90% in the immune system of reconstituted animals. Using a CD40-mediated colitis model, we further validated our CRISPR/Cas9-based platform for investigating gene function in experimental IBD. In doing so, we developed a model system that delivers genetically modified mice in a manner much faster than conventional methodology, significantly reducing the time from target identification to in vivo target validation and expediting drug development.


Assuntos
Antígenos CD40/imunologia , Sistemas CRISPR-Cas/genética , Células-Tronco Hematopoéticas/metabolismo , Animais , Antígenos CD40/metabolismo , Colite/imunologia , Colite/terapia , Regulação da Expressão Gênica , Transplante de Células-Tronco Hematopoéticas , Camundongos
4.
Antib Ther ; 3(1): 18-62, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33928225

RESUMO

A bispecific antibody (bsAb) is able to bind two different targets or two distinct epitopes on the same target. Broadly speaking, bsAbs can include any single molecule entity containing dual specificities with at least one being antigen-binding antibody domain. Besides additive effect or synergistic effect, the most fascinating applications of bsAbs are to enable novel and often therapeutically important concepts otherwise impossible by using monoclonal antibodies alone or their combination. This so-called obligate bsAbs could open up completely new avenue for developing novel therapeutics. With evolving understanding of structural architecture of various natural or engineered antigen-binding immunoglobulin domains and the connection of different domains of an immunoglobulin molecule, and with greatly improved understanding of molecular mechanisms of many biological processes, the landscape of therapeutic bsAbs has significantly changed in recent years. As of September 2019, over 110 bsAbs are under active clinical development, and near 180 in preclinical development. In this review article, we introduce a system that classifies bsAb formats into 30 categories based on their antigen-binding domains and the presence or absence of Fc domain. We further review the biology applications of approximately 290 bsAbs currently in preclinical and clinical development, with the attempt to illustrate the principle of selecting a bispecific format to meet biology needs and selecting a bispecific molecule as a clinical development candidate by 6 critical criteria. Given the novel mechanisms of many bsAbs, the potential unknown safety risk and risk/benefit should be evaluated carefully during preclinical and clinical development stages. Nevertheless we are optimistic that next decade will witness clinical success of bsAbs or multispecific antibodies employing some novel mechanisms of action and deliver the promise as next wave of antibody-based therapeutics.

5.
Mol Cancer Ther ; 17(5): 1039-1050, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29592882

RESUMO

Antiangiogenic therapy is a clinically validated modality in cancer treatment. To date, all approved antiangiogenic drugs primarily inhibit the VEGF pathway. Delta-like ligand 4 (DLL4) has been identified as a potential drug target in VEGF-independent angiogenesis and tumor-initiating cell (TIC) survival. A dual-specific biologic targeting both VEGF and DLL4 could be an attractive strategy to improve the effectiveness of anti-VEGF therapy. ABT-165 was uniquely engineered using a proprietary dual-variable domain immunoglobulin (DVD-Ig) technology based on its ability to bind and inhibit both DLL4 and VEGF. In vivo, ABT-165 induced significant tumor growth inhibition compared with either parental antibody treatment alone, due, in part, to the disruption of functional tumor vasculature. In combination with chemotherapy agents, ABT-165 also induced greater antitumor response and outperformed anti-VEGF treatment. ABT-165 displayed nonlinear pharmacokinetic profiles in cynomolgus monkeys, with an apparent terminal half-life > 5 days at a target saturation dose. In a GLP monkey toxicity study, ABT-165 was well-tolerated at doses up to 200 mg/kg with non-adverse treatment-related histopathology findings limited to the liver and thymus. In summary, ABT-165 represents a novel antiangiogenic strategy that potently inhibits both DLL4 and VEGF, demonstrating favorable in vivo efficacy, pharmacokinetic, and safety profiles in preclinical models. Given these preclinical attributes, ABT-165 has progressed to a phase I study. Mol Cancer Ther; 17(5); 1039-50. ©2018 AACR.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Glioblastoma/tratamento farmacológico , Imunoglobulinas/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Glioblastoma/metabolismo , Glioblastoma/patologia , Células HT29 , Humanos , Imunoglobulinas/metabolismo , Fatores Imunológicos/metabolismo , Fatores Imunológicos/farmacocinética , Fatores Imunológicos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macaca fascicularis/metabolismo , Proteínas de Membrana/metabolismo , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Protein Cell ; 9(1): 121-129, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28585177

RESUMO

Novel biologics that redirect cytotoxic T lymphocytes (CTLs) to kill tumor cells bearing a tumor associated antigen hold great promise in the clinic. However, the ability to safely and potently target CD3 on CTL toward tumor associated antigens (TAA) expressed on tumor cells remains a challenge of both technology and biology. Herein we describe the use of a Half DVD-Ig format that can redirect CTL to kill tumor cells. Notably, Half DVD-Ig molecules that are monovalent for each specificity demonstrated reduced non-specific CTL activation and conditional CTL activation upon binding to TAA compared to intact tetravalent DVD-Ig molecules that are bivalent for each specificity, while maintaining good drug like properties and appropriate PK properties.


Assuntos
Anticorpos Monoclonais/imunologia , Citotoxicidade Imunológica , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T Citotóxicos/imunologia , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/farmacocinética , Complexo CD3/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Feminino , Humanos , Ativação Linfocitária/imunologia , Camundongos SCID , Ratos Sprague-Dawley
7.
MAbs ; 9(2): 269-284, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27929753

RESUMO

Exudative age-related macular degeneration (AMD) is the most common cause of moderate and severe vision loss in developed countries. Intraocular injections of vascular endothelial growth factor (VEGF or VEGF-A)-neutralizing proteins provide substantial benefit, but frequent, long-term injections are needed. In addition, many patients experience initial visual gains that are ultimately lost due to subretinal fibrosis. Preclinical studies and early phase clinical trials suggest that combined suppression of VEGF and platelet-derived growth factor-BB (PDGF-BB) provides better outcomes than suppression of VEGF alone, due to more frequent regression of neovascularization (NV) and suppression of subretinal fibrosis. We generated a dual variable domain immunoglobulin molecule, ABBV642 that specifically and potently binds and neutralizes VEGF and PDGF-BB. ABBV642 has been optimized for treatment of exudative AMD based on the following design characteristics: 1) high affinity binding to all VEGF-A isoforms and both soluble and extracellular matrix (ECM)-associated PDGF-BB; 2) potential for extended residence time in the vitreous cavity to decrease the frequency of intraocular injections; 3) rapid clearance from systemic circulation compared with molecules with wild type Fc region for normal FcRn binding, which may reduce the risk of systemic complications; and 4) low risk of potential effector function. The bispecificity of ABBV642 allows for a single injection of a single therapeutic agent, and thus a more streamlined development and regulatory path compared with combination products. In a mouse model of exudative AMD, ABBV642 was observed to be more effective than aflibercept. ABBV642 has potential to improve efficacy with reduced injection frequency in patients with exudative AMD, thereby reducing the enormous disease burden for patients and society.


Assuntos
Inibidores da Angiogênese/farmacologia , Anticorpos Biespecíficos/farmacologia , Degeneração Macular/tratamento farmacológico , Proteínas Proto-Oncogênicas c-sis/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Becaplermina , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Engenharia de Proteínas , Coelhos
8.
PLoS One ; 10(5): e0124135, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25997020

RESUMO

Epidermal growth factor receptor (EGFR) and receptor tyrosine-protein kinase 3 (ErbB3) are two well-established targets in cancer therapy. There is significant crosstalk among these two receptors and others. To block signaling from both EGFR and ErbB3, we generated anti-EGFR and anti-ErbB3 DVD-Ig proteins. Two DVD-Ig proteins maintained the functions of the combination of the two parental antibodies. The DVD-Ig proteins inhibit cell signaling and proliferation in A431 and FaDu cells while half DVD-Ig proteins lost proliferation inhibition function. Interestingly, in the presence of ß-Heregulin (HRG), the DVD-Ig proteins show synergies with respect to inhibiting cell proliferation. The DVD-Ig proteins downregulate EGFR protein expression in the presence of HRG, which may be due to receptor internalization. Furthermore, the DVD-Ig proteins remarkably disrupt ß-Heregulin binding to FaDu cells.


Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Receptores ErbB/antagonistas & inibidores , Região Variável de Imunoglobulina/imunologia , Receptor ErbB-3/antagonistas & inibidores , Anticorpos Biespecíficos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/metabolismo , Humanos , Região Variável de Imunoglobulina/química , Ligantes , Neuregulina-1/metabolismo , Ligação Proteica , Receptor ErbB-3/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos
9.
PLoS One ; 9(5): e97292, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24824849

RESUMO

Inhibiting ErbB2 signaling with monoclonal antibodies (mAbs) or small molecules is an established therapeutic strategy in oncology. We have developed anti-ErbB2 Dual Variable Domain Immunoglobulin (DVD-Ig) proteins that capture the function of a combination of two anti-ErbB2 antibodies. In addition, some of the anti-ErbB2 DVD-Ig proteins gain the new functions of enhancing ErbB2 signaling and cell proliferation in N87 cells. We further found that two DVD-Ig proteins, DVD687 and DVD688, have two distinct mechanisms of actions in Calu-3 and N87 cells. DVD687 enhances cell cycle progression while DVD688 induces apoptosis in N87 cells. Using a half DVD687, we found that avidity may play a key role in the agonist activity of DVD687 in N87 cells.


Assuntos
Anticorpos Monoclonais/imunologia , Imunoglobulinas/biossíntese , Receptor ErbB-2/imunologia , Transdução de Sinais/imunologia , Apoptose/imunologia , Bromodesoxiuridina , Linhagem Celular , Dimerização , Ensaio de Imunoadsorção Enzimática , Humanos , Immunoblotting , Imunoglobulinas/isolamento & purificação , Imunoglobulinas/metabolismo , Imunoprecipitação , Receptor ErbB-2/química , Ressonância de Plasmônio de Superfície
10.
MAbs ; 5(3): 358-63, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23549062

RESUMO

Several bispecific antibody-based formats have been developed over the past 25 years in an effort to produce a new generation of immunotherapeutics that target two or more disease mechanisms simultaneously. One such format, the dual-variable domain immunoglobulin (DVD-Ig™), combines the target binding domains of two monoclonal antibodies via flexible naturally occurring linkers, which yields a tetravalent IgG - like molecule. We report the structure of an interleukin (IL)12-IL18 DVD-Ig™ Fab (DFab) fragment with IL18 bound to the inner variable domain (VD) that reveals the remarkable flexibility of the DVD-Ig™ molecule and how the DVD-Ig™ format can function to bind four antigens simultaneously. An understanding of how the inner variable domain retains function is of critical importance for designing DVD-Ig™ molecules, and for better understanding of the flexibility of immunoglobulin variable domains and linkers, which may aid in the design of improved bi- and multi-specific biologics in general.


Assuntos
Anticorpos Biespecíficos/química , Região Variável de Imunoglobulina/química , Imunoterapia/métodos , Interleucina-18/química , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Monoclonais/química , Anticorpos Monoclonais/uso terapêutico , Especificidade de Anticorpos , Antígenos/imunologia , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Interleucina-12/imunologia , Interleucina-18/imunologia , Ligação Proteica , Engenharia de Proteínas , Estrutura Terciária de Proteína
11.
Methods Enzymol ; 502: 25-41, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22208980

RESUMO

Bispecific antibodies may be used to improve clinical efficacy by targeting two disease mechanisms for the treatment of complex human diseases in a single agent. Bispecific antibodies also hold promise for certain therapeutic applications difficult to achieve by single-targeting monospecific antibodies, such as immune (T cell or NK) cell retargeting, site-specific targeting, enabling therapeutics to cross the blood-brain barrier, and unique receptor modulation. Although the history of bispecific antibody research is almost as long as hybridoma technology, it is not until recent that bispecific antibodies have made substantial breakthrough, thanks to promising clinical trial results of a few bispecific antibodies and the development of new formats which largely ease manufacturing and physicochemical property challenges encountered by early bispecific antibody formats. The dual-variable-domain immunoglobulin (DVD-Ig™) format was initially described in 2007. In this format, the target-binding variable domains of two monoclonal antibodies can be combined via naturally occurring linkers to create a tetravalent, dual-targeting single agent. Viable DVD-Ig molecules can be identified through optimization of antibody pair, antibody variable domain orientation, and linkers. An optimized DVD-Ig™ molecule has many desirable properties of a mAb, such as good expression in mammalian cells, easy purification to homogeneity using standard approaches, displaying good drug-like biophysical and pharmacokinetic properties, and amenability to large-scale manufacturing. Several DVD-Ig molecules have demonstrated favorable pharmacokinetic properties and efficacy in preclinical animal models. Here, we provide an example of construction and preliminary characterization of a DVD-Ig™ molecule and discuss the general approach used in optimization.


Assuntos
Anticorpos Biespecíficos/química , Anticorpos Monoclonais/química , Antígenos/metabolismo , Desenho de Fármacos , Engenharia de Proteínas/métodos , Animais , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/metabolismo , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Especificidade de Anticorpos , Antígenos/imunologia , Cromatografia de Afinidade , Cromatografia em Gel , Clonagem Molecular , Primers do DNA/química , Primers do DNA/genética , Eletroforese em Gel de Poliacrilamida , Vetores Genéticos , Células HEK293 , Humanos , Cinética , Espectrometria de Massas , Camundongos , Terapia de Alvo Molecular , Reação em Cadeia da Polimerase , Ligação Proteica , Transfecção
12.
Expert Rev Clin Pharmacol ; 3(4): 491-508, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22111679

RESUMO

Bispecific antibodies (bsAbs) have been on the scene for decades and represent the next generation of antibody-based therapeutics. Unlike monospecific, monoclonal antibodies (mAbs), bsAbs can target two or more disease mechanisms as a single agent and can offer certain unique therapeutic strategies that are difficult to acheive with mAbs. The lessons learned during the past 35 years of mAb development and 25 years of bsAbs experience are shaping development of the next generation of bsAbs and multispecific antibody-based drugs. Recent improvements in manufacturability and drug-like properties of certain BsAb formats, and clinical success for a few BsAbs, are reviving this area. In this article, we discuss the potential limitations of the first-generation mAbs and opportunities to improve upon existing mAb drugs, factors driving the multispecific antibody field and the strengths, weaknesses and development status of representative multispecific antibody concepts.

13.
J Immunol ; 182(12): 7482-9, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19494271

RESUMO

The Bcl-2 family of proteins plays a critical role in controlling immune responses by regulating the expansion and contraction of activated lymphocyte clones by apoptosis. ABT-737, which was originally developed for oncology, is a potent inhibitor of Bcl-2, Bcl-x(L), and Bcl-w protein function. There is evidence that Bcl-2-associated dysregulation of lymphocyte apoptosis may contribute to the pathogenesis of autoimmunity and lead to the development of autoimmune diseases. In this study, we report that ABT-737 treatment resulted in potent inhibition of lymphocyte proliferation as measured by in vitro mitogenic or ex vivo Ag-specific stimulation. More importantly, ABT-737 significantly reduced disease severity in tissue-specific and systemic animal models of autoimmunity. Bcl-2 family antagonism by ABT-737 was efficacious in treating animal models of arthritis and lupus. Our results suggest that treatment with a Bcl-2 family antagonist represents a novel and potentially attractive therapeutic approach for the clinical treatment of autoimmunity.


Assuntos
Autoimunidade/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Nitrofenóis/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Apresentação de Antígeno/efeitos dos fármacos , Artrite Experimental/induzido quimicamente , Artrite Experimental/imunologia , Artrite Experimental/patologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Hemocianinas/imunologia , Humanos , Hipersensibilidade Tardia/imunologia , Interferon-alfa/farmacologia , Nefrite Lúpica/induzido quimicamente , Nefrite Lúpica/imunologia , Nefrite Lúpica/patologia , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Camundongos , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Especificidade por Substrato
14.
Nat Biotechnol ; 25(11): 1290-7, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17934452

RESUMO

For complex diseases in which multiple mediators contribute to overall disease pathogenesis by distinct or redundant mechanisms, simultaneous blockade of multiple targets may yield better therapeutic efficacy than inhibition of a single target. However, developing two separate monoclonal antibodies for clinical use as combination therapy is impractical, owing to regulatory hurdles and cost. Multi-specific, antibody-based molecules have been investigated; however, their therapeutic use has been hampered by poor pharmacokinetics, stability and manufacturing feasibility. Here, we describe a generally applicable model of a dual-specific, tetravalent immunoglobulin G (IgG)-like molecule--termed dual-variable-domain immunoglobulin (DVD-Ig)--that can be engineered from any two monoclonal antibodies while preserving activities of the parental antibodies. This molecule can be efficiently produced from mammalian cells and exhibits good physicochemical and pharmacokinetic properties. Preclinical studies of a DVD-Ig protein in an animal disease model demonstrate its potential for therapeutic application in human diseases.


Assuntos
Anticorpos Biespecíficos/biossíntese , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Monoclonais/biossíntese , Artrite Experimental/tratamento farmacológico , Região Variável de Imunoglobulina/biossíntese , Engenharia de Proteínas , Animais , Anticorpos Biespecíficos/farmacocinética , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/uso terapêutico , Artrite Experimental/patologia , Células CHO , Cricetinae , Cricetulus , Modelos Animais de Doenças , Humanos , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/metabolismo , Região Variável de Imunoglobulina/uso terapêutico , Interleucina-12/antagonistas & inibidores , Interleucina-12/imunologia , Interleucina-18/antagonistas & inibidores , Interleucina-18/imunologia , Camundongos , Estrutura Terciária de Proteína , Ratos
15.
Mol Cell Biol ; 23(12): 4230-46, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12773566

RESUMO

The Eleven Lysine-rich Leukemia (ELL) gene undergoes translocation and fuses in frame to the Multiple Lineage Leukemia (MLL) gene in a substantial proportion of patients suffering from acute forms of leukemia. Molecular mechanisms of cellular transformation by the MLL-ELL fusion are not well understood. Although both MLL-ELL and wild-type ELL can reduce functional activity of p53 tumor suppressor, our data reveal that MLL-ELL is a much more efficient inhibitor of p53 than is wild-type ELL. We also demonstrate for the first time that ELL extreme C terminus [ELL(eCT)] is required for the recruitment of p53 into MLL-ELL nuclear foci and is both necessary and sufficient for the MLL-ELL inhibition of p53-mediated induction of p21 and apoptosis. Finally, our results demonstrate that MLL-ELL requires the presence of intact ELL(eCT) in order to disrupt p53 interactions with p300/CBP coactivator and thus significantly reduce p53 acetylation in vivo. Since ELL(eCT) has recently been shown to be both necessary and sufficient for MLL-ELL-mediated transformation of normal blood progenitors, our data correlate ELL(eCT) contribution to MLL-ELL transformative effects with its ability to functionally inhibit p53.


Assuntos
Proteínas de Fusão Oncogênica/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Western Blotting , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Genes Supressores de Tumor , Genes p53 , Vetores Genéticos , Humanos , Leucemia/genética , Leucemia/metabolismo , Microscopia de Fluorescência , Proteína de Leucina Linfoide-Mieloide , Proteínas Nucleares/metabolismo , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Transativadores/metabolismo , Ativação Transcricional , Transfecção , Células Tumorais Cultivadas , Proteína Tumoral p73 , Proteínas Supressoras de Tumor
16.
J Biol Chem ; 277(22): 19251-4, 2002 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-11953423

RESUMO

MDMX, an MDM2-related protein, has emerged as yet another essential negative regulator of p53 tumor suppressor, since loss of MDMX expression results in p53-dependent embryonic lethality in mice. However, it remains unknown why neither homologue can compensate for the loss of the other. In addition, results of biochemical studies have suggested that MDMX inhibits MDM2-mediated p53 degradation, thus contradicting its role as defined in gene knockout experiments. Using cells deficient in either MDM2 or MDMX, we demonstrated that these two p53 inhibitors are in fact functionally dependent on each other. In the absence of MDMX, MDM2 is largely ineffective in down-regulating p53 because of its extremely short half-life. MDMX renders MDM2 protein sufficiently stable to function at its full potential for p53 degradation. On the other hand, MDMX, which is a cytoplasmic protein, depends on MDM2 to redistribute into the nucleus and be able to inactivate p53. We also showed that MDMX, when exceedingly overexpressed, inhibits MDM2-mediated p53 degradation by competing with MDM2 for p53 binding. Our findings therefore provide a molecular basis for the nonoverlapping activities of these two p53 inhibitors previously revealed in genetic studies.


Assuntos
Proteínas Nucleares , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Western Blotting , Citoplasma/metabolismo , Regulação para Baixo , Genes p53/genética , Humanos , Camundongos , Camundongos Knockout , Plasmídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas c-mdm2 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Frações Subcelulares , Fatores de Tempo , Transfecção
17.
Artigo em Inglês | MEDLINE | ID: mdl-12215798

RESUMO

Human low-affinity nerve growth factor receptor (p75NGFR) was amplified from human fetal brain by RT-PCR and ligated into the retrovirus expression vector pXT-1. The cloned pXT-1/p75NGFR was packaged by PA37 cell line and the collected pseudovirus was used to infect neural cell line R2. The expression of p75NGFR on R2 cells at the RNA transcriptional and protein translation levels were demonstrated by Northern bloting and FITC-labeled immunological analysis. Further studies indicated that p75NGFR could induce apoptosis of neural cells in culture medium deprived of serum. Such cell death could be prevented by inhibitors of macromolecular syntheses such as actinomycin D and cycloheximidine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...