Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35591400

RESUMO

The tensile stress-strain response is considered to be the most important and fundamental mechanical property of ultra-high-performance fiber-reinforced concrete (UHPFRC). Nevertheless, it is still a challenging matter for researchers to determine the tensile properties of UHPFRC. As a simpler alternative to the direct tensile test, bending tests are widely performed to characterize the tensile behavior of UHPFRC, but require further consideration and a sophisticated inverse analysis procedure. In order to efficiently predict the tensile properties of UHPFRC, a nonlinear inverse method based on notched three-point bending tests (3PBT) was proposed in this paper. A total of fifteen UHPFRC beams were fabricated and tested to evaluate the sensitivity of the predicted tensile behavior to variations in fiber volume fraction. A segmented stress-strain model was used, which is capable of describing the various tensile properties of UHPFRC, including strain softening and strain hardening. A more approximate formulation was adopted to simulate the load-deflection response of UHPFRC beam specimens. The closed-form analytical solutions were validated by tensile test results and existing methods in literature. Finally, parametric studies were also conducted to investigate the robustness of the proposed method. The load-deflection responses obtained from notched 3PBT could be easily converted into tensile properties with this inverse method.

2.
Materials (Basel) ; 14(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203258

RESUMO

The cyclic tensile behavior of steel-reinforced high strain-hardening ultrahigh-performance concrete (HSHUHPC) was investigated in this paper. In the experimental program, 12 HSHUHPC specimens concentrically placed in a single steel reinforcement under cyclic uniaxial tension were tested, accompanied by acoustic emission (AE) source locating technology, and 4 identical specimens under monotonic uniaxial tension were tested as references. The experimental variables mainly include the loading pattern, the diameter of the embedded steel rebar, and the level of target strain at each cycle. The tensile responses of the steel-reinforced HSHUHPC specimens were evaluated using multiple performance measures, including the failure pattern, load-strain response, residual strain, stiffness degradation, and the tension-stiffening behavior. The test results showed that the enhanced bond strength due to the inclusion of steel fibers transformed the failure pattern of the steel-reinforced HSHUHPC into a single, localized macro-crack in conjunction with a sprinkling of narrow and closely spaced micro-cracks, which intensified the strain concentration in the embedded steel rebar. Besides, it was observed that the larger the diameter of the embedded steel rebar, the smaller the maximum accumulative tensile strain under cyclic tension, which indicated that the larger the diameter of the embedded steel rebar, the greater the contribution to the tensile stiffness of steel-reinforced HSHUHPC specimens in the elastic-plastic stage. In addition, it was found that a larger embedded steel rebar appeared to reduce the tension-stiffening effect (peak tensile strength) of the HSHUHPC. Moreover, the residual strain and the stiffness of the steel-reinforced HSHUHPC were reduced by increasing the number of cycles and finally tended toward stability. Nevertheless, different target strain rates in each cycle resulted in different eventual cumulative tensile strain rates; hence the rules about failure pattern, residual strain, and loading stiffness were divergent. Finally, the relationship between the accumulative tensile strain and the loading stiffness degradation ratio under cyclic tension was proposed and the tension-stiffening effect was analyzed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...