Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 17(1): 33-38, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34782776

RESUMO

The growth of wafer-scale single-crystal two-dimensional transition metal dichalcogenides (TMDs) on insulating substrates is critically important for a variety of high-end applications1-4. Although the epitaxial growth of wafer-scale graphene and hexagonal boron nitride on metal surfaces has been reported5-8, these techniques are not applicable for growing TMDs on insulating substrates because of substantial differences in growth kinetics. Thus, despite great efforts9-20, the direct growth of wafer-scale single-crystal TMDs on insulating substrates is yet to be realized. Here we report the successful epitaxial growth of two-inch single-crystal WS2 monolayer films on vicinal a-plane sapphire surfaces. In-depth characterizations and theoretical calculations reveal that the epitaxy is driven by a dual-coupling-guided mechanism, where the sapphire plane-WS2 interaction leads to two preferred antiparallel orientations of the WS2 crystal, and sapphire step edge-WS2 interaction breaks the symmetry of the antiparallel orientations. These two interactions result in the unidirectional alignment of nearly all the WS2 islands. The unidirectional alignment and seamless stitching of WS2 islands are illustrated via multiscale characterization techniques; the high quality of WS2 monolayers is further evidenced by a photoluminescent circular helicity of ~55%, comparable to that of exfoliated WS2 flakes. Our findings offer the opportunity to boost the production of wafer-scale single crystals of a broad range of two-dimensional materials on insulators, paving the way to applications in integrated devices.

2.
Science ; 366(6468): 983-987, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31753996

RESUMO

Controlling the crystal structure is a powerful approach for manipulating the fundamental properties of solids. In van der Waals materials, this control can be achieved by modifying the stacking order through rotation and translation between the layers. Here, we observed stacking-dependent interlayer magnetism in the two-dimensional (2D) magnetic semiconductor chromium tribromide (CrBr3), which was enabled by the successful growth of its monolayer and bilayer through molecular beam epitaxy. Using in situ spin-polarized scanning tunneling microscopy and spectroscopy, we directly correlate the atomic lattice structure with the observed magnetic order. Although the individual monolayer CrBr3 is ferromagnetic, the interlayer coupling in bilayer depends on the stacking order and can be either ferromagnetic or antiferromagnetic. Our observations pave the way for manipulating 2D magnetism with layer twist angle control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...