Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 862, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286984

RESUMO

Efforts to produce aromatic monomers through catalytic lignin depolymerization have historically focused on aryl-ether bond cleavage. A large fraction of aromatic monomers in lignin, however, are linked by various carbon-carbon (C-C) bonds that are more challenging to cleave and limit the yields of aromatic monomers from lignin depolymerization. Here, we report a catalytic autoxidation method to cleave C-C bonds in lignin-derived dimers and oligomers from pine and poplar. The method uses manganese and zirconium salts as catalysts in acetic acid and produces aromatic carboxylic acids as primary products. The mixtures of the oxygenated monomers are efficiently converted to cis,cis-muconic acid in an engineered strain of Pseudomonas putida KT2440 that conducts aromatic O-demethylation reactions at the 4-position. This work demonstrates that autoxidation of lignin with Mn and Zr offers a catalytic strategy to increase the yield of valuable aromatic monomers from lignin.

2.
ACS Cent Sci ; 9(12): 2277-2285, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38161372

RESUMO

Selective lignin depolymerization is a key step in lignin valorization to value-added products, and there are multiple catalytic methods to cleave labile aryl-ether bonds in lignin. However, the overall aromatic monomer yield is inherently limited by refractory carbon-carbon linkages, which are abundant in lignin and remain intact during most selective lignin deconstruction processes. In this work, we demonstrate that a Co/Mn/Br-based catalytic autoxidation method promotes carbon-carbon bond cleavage in acetylated lignin oligomers produced from reductive catalytic fractionation. The oxidation products include acetyl vanillic acid and acetyl vanillin, which are ideal substrates for bioconversion. Using an engineered strain of Pseudomonas putida, we demonstrate the conversion of these aromatic monomers to cis,cis-muconic acid. Overall, this study demonstrates that autoxidation enables higher yields of bioavailable aromatic monomers, exceeding the limits set by ether-bond cleavage alone.

3.
Angew Chem Int Ed Engl ; 60(8): 4009-4013, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33152166

RESUMO

M(NHx ) intermediates involved in N-N bond formation are central to ammonia oxidation (AO) catalysis, an enabling technology to ultimately exploit ammonia (NH3 ) as an alternative fuel source. While homocoupling of a terminal amide species (M-NH2 ) to form hydrazine (N2 H4 ) has been proposed, well-defined examples are without precedent. Herein, we discuss the generation and electronic structure of a NiIII -NH2 species that undergoes bimolecular coupling to generate a NiII 2 (N2 H4 ) complex. This hydrazine adduct can be further oxidized to a structurally unusual Ni2 (N2 H2 ) species; this releases N2 in the presence of NH3 , thus establishing a synthetic cycle for Ni-mediated AO. Distribution of the redox load for H2 N-NH2 formation via NH2 coupling between two metal centers presents an attractive strategy for AO catalysis using Earth-abundant, late first-row metals.

4.
J Am Chem Soc ; 142(17): 7827-7835, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32249575

RESUMO

Terminal NiIII hydrides are proposed intermediates in proton reduction catalyzed by both molecular electrocatalysts and metalloenzymes, but well-defined examples of paramagnetic nickel hydride complexes are largely limited to bridging hydrides. Herein, we report the synthesis of an S = 1/2, terminally bound thiolate-NiIII-H complex. This species and its terminal hydride ligand in particular have been thoroughly characterized by vibrational and EPR techniques, including pulse EPR studies. Corresponding DFT calculations suggest appreciable spin leakage onto the thiolate ligand. The hyperfine coupling to the terminal hydride ligand of the thiolate-NiIII-H species is comparable to that of the hydride ligand proposed for the Ni-C hydrogenase intermediate (NiIII-H-FeII). Upon warming, the featured thiolate-NiIII-H species undergoes bimolecular reductive elimination of H2. Associated kinetic studies are discussed and compared with a structurally related FeIII-H species that has also recently been reported to undergo bimolecular H-H coupling.

5.
Chem Commun (Camb) ; 55(37): 5363-5366, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30994653

RESUMO

A heterobimetallic VFe complex is demonstrated to catalyse hydrazine disproportionation with yields of up to 1073 equivalents of NH3 per catalyst, comparable to the highest turnover known for any molecular catalyst. Notably, the heterobimetallic complex is appreciably more active than monometallic analogues of the V and Fe sites, suggesting that bimetallic cooperativity may facilitate the observed catalysis.

6.
J Am Chem Soc ; 140(20): 6374-6382, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29684269

RESUMO

Believed to accumulate on the Fe sites of the FeMo-cofactor (FeMoco) of MoFe-nitrogenase under turnover, strongly donating hydrides have been proposed to facilitate N2 binding to Fe and may also participate in the hydrogen evolution process concomitant to nitrogen fixation. Here, we report the synthesis and characterization of a thiolate-coordinated FeIII(H)(N2) complex, which releases H2 upon warming to yield an FeII-N2-FeII complex. Bimolecular reductive elimination of H2 from metal hydrides is pertinent to the hydrogen evolution processes of both enzymes and electrocatalysts, but well-defined examples are uncommon and usually observed from diamagnetic second- and third-row transition metals. Kinetic data obtained on the HER of this ferric hydride species are consistent with a bimolecular reductive elimination pathway, arising from cleavage of the Fe-H bond with a computationally determined BDFE of 55.6 kcal/mol.


Assuntos
Compostos Férricos/química , Hidrogênio/química , Molibdoferredoxina/química , Nitrogênio/química , Compostos de Sulfidrila/química , Compostos Férricos/síntese química , Ligantes , Modelos Moleculares , Molibdoferredoxina/síntese química , Oxirredução , Compostos de Sulfidrila/síntese química , Temperatura , Termodinâmica
7.
J Am Chem Soc ; 135(38): 14448-58, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23984911

RESUMO

Concomitant deprotonation and metalation of hexadentate ligand platform (tbs)LH6 ((tbs)LH6 = 1,3,5-C6H9(NHC6H4-o-NHSiMe2(t)Bu)3) with divalent transition metal starting materials Fe2(Mes)4 (Mes = mesityl) or Mn3(Mes)6 in the presence of tetrahydrofuran (THF) resulted in isolation of homotrinuclear complexes ((tbs)L)Fe3(THF) and ((tbs)L)Mn3(THF), respectively. In the absence of coordinating solvent (THF), the deprotonation and metalation exclusively afforded dinuclear complexes of the type ((tbs)LH2)M2 (M = Fe or Mn). The resulting dinuclear species were utilized as synthons to prepare bimetallic trinuclear clusters. Treatment of ((tbs)LH2)Fe2 complex with divalent Mn source (Mn2(N(SiMe3)2)4) afforded the bimetallic complex ((tbs)L)Fe2Mn(THF), which established the ability of hexamine ligand (tbs)LH6 to support mixed metal clusters. The substitutional homogeneity of ((tbs)L)Fe2Mn(THF) was determined by (1)H NMR, (57)Fe Mössbauer, and X-ray fluorescence. Anomalous scattering measurements were critical for the unambiguous assignment of the trinuclear core composition. Heating a solution of ((tbs)LH2)Mn2 with a stoichiometric amount of Fe2(Mes)4 (0.5 mol equiv) affords a mixture of both ((tbs)L)Mn2Fe(THF) and ((tbs)L)Fe2Mn(THF) as a result of the thermodynamic preference for heavier metal substitution within the hexa-anilido ligand framework. These results demonstrate for the first time the assembly of mixed metal cluster synthesis in an unbiased ligand platform.


Assuntos
Complexos de Coordenação/síntese química , Compostos Ferrosos/química , Manganês/química , Ligantes
8.
Dalton Trans ; 42(23): 8498-503, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23629511

RESUMO

[Re(bpy-tBu)(CO)4](OTf) (bpy-tBu = 4,4'-di-tert-butyl-2,2'-bipyridine, OTf = trifluoromethanesulfonate) (1) and [Re(bpy)(CO)4](OTf) (bpy = 2,2'-bipyridine) (2) were synthesized and studied as proposed intermediates in the electrocatalytic reduction of carbon dioxide (CO2) by Re(bpy-R)(CO)3X. Both compounds demonstrated increased current responses in cyclic voltammograms under CO2. Complex 1 was also characterized by X-ray crystallography. Infrared-spectroelectrochemistry (IR-SEC) of 1 and 2 indicated that upon exposure of the cationic tetracarbonyl compounds to a reducing potential, a CO ligand is labilised and [Re(bpy-R)(CO)3(CH3CN)](+) species are formed. This is proposed to occur via an electron-transfer-catalysed process wherein a catalytic amount of reduced species propagates a ligand exchange reaction. Addition of a catalytic amount of potassium intercalated graphite (KC8), a chemical reductant, to a solution of 1 or 2 also yielded quantitative formation of [Re(bpy-R)(CO)3(CH3CN)](+), which indicates that the CO loss is catalysed by electron transfer, and not the electrode itself.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...