Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38686839

RESUMO

This study identified a lackluster classroom atmosphere in advanced biochemistry, characterized by low levels of active student participation in interactive communication and subpar quality of after-class learning tasks. The issues stemmed not only from students' learning attitudes, such as insufficient attention to the curriculum, but also from the course's inherent lack of challenge. Employing flow theory, we optimized teaching content, enhanced course difficulty, reformed assessment methods, and incorporated information-based teaching tools to redesign the instructional process. Through a questionnaire survey, students evaluated teaching effectiveness after implementation of the changes: a majority expressed satisfaction with the moderate difficulty of the course and enjoyment of the classroom instruction, and reported experiencing positive emotional flow. Peer experts commended the course, noting its lively atmosphere and the students' acquisition of both basic research methods and foundational knowledge. The findings will be used to continually enhance graduate students' innovation abilities and sense of achievement through ongoing reforms.

2.
Nat Commun ; 15(1): 3108, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600080

RESUMO

The senescence of fruit is a complex physiological process, with various cell types within the pericarp, making it highly challenging to elucidate their individual roles in fruit senescence. In this study, a single-cell expression atlas of the pericarp of pitaya (Hylocereus undatus) is constructed, revealing exocarp and mesocarp cells undergoing the most significant changes during the fruit senescence process. Pseudotime analysis establishes cellular differentiation and gene expression trajectories during senescence. Early-stage oxidative stress imbalance is followed by the activation of resistance in exocarp cells, subsequently senescence-associated proteins accumulate in the mesocarp cells at late-stage senescence. The central role of the early response factor HuCMB1 is unveiled in the senescence regulatory network. This study provides a spatiotemporal perspective for a deeper understanding of the dynamic senescence process in plants.


Assuntos
Cactaceae , Frutas , Frutas/genética , Proteínas/genética , Cactaceae/genética , Análise de Sequência de RNA
3.
RSC Adv ; 14(11): 7572-7581, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38440267

RESUMO

The purpose of this study was to design a novel antioxidant and antibacterial film for food packaging using food-grade raw materials. The films were designed and fabricated based on carboxymethyl chitosan and pectin incorporated with procyanidins (PCs) and phycocyanin (Phy) by the tape casting method. The effects of different proportions of PCs and Phy on the properties and functions of the prepared films were studied. The results showed that the thickness of films could range from 55 to 70 µm, with dense network structure and uniform distribution of elements. Compared with C-Film group, the film loaded with PCs and Phy had lower water solubility and swelling rate, and higher tensile strength and elongation at break. FITR and XRD spectra revealed the molecular interaction mechanism among carboxymethyl chitosan, pectin, PCs and Phy, which could effectively endow the films with ultraviolet barrier properties. Moreover, the addition of PCs and Phy could effectively improve the antioxidant capacity and antibacterial effect of films, for example, the free radical scavenging abilities of most films were above 80% when the concentration of PCs was 40 µg mL-1. In view of these functional properties, the prepared film containing PCs and Phy have been successfully used in food packaging, which was proved by the preservation experiment of grapes. This study can provide theoretical and technical guidance for the preparation of biodegradable antibacterial films, and their application in the food packaging field.

4.
Plant Physiol Biochem ; 196: 65-74, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36701992

RESUMO

Trypsin has a new activity of scavenging superoxide anion and generating hydrogen peroxide. Trypsin can significantly improve the storage quality of C. sativus. To illustrate the mechanism of trypsin-induced resistance in fruits and vegetables, an integrated analysis of widely targeted metabolomics and transcriptomics was carried out. Transcriptomic results showed that 1068 genes highly related to phenylpropanoid biosynthesis gathered in the brown module were obtained by WGCNA. In KEGG analysis, differentially expressed genes (DEGs) were also highly enriched in EIP (Environmental Information Processing) pathways "Plant hormone signal transduction (map04075)" and "MAPK signaling pathway-plant (map04016)". Next, 87 genes were identified as the leading edge by GSEA analysis. So far, CsMYC2 was highlighted as a key transcription factor that regulates phenylpropanoid biosynthesis identified by GSEA and WGCNA. Furthermore, the major route of biosynthesis of phenylpropanoid compounds including coumarins, lignins, chlorogenic acid, flavonoids, and derivatives regulated by trypsin was also illustrated by both transcriptomic and metabolomic data. Results of O2PLS showed that CsMYC2 was positively correlated with Rosmarinic acid-3-O-glucoside, Epigallocatechin, Quercetin-3-O-sophoroside (Baimaside), and so on. Correlation between CsMYC2, phenylpropanoid related genes, and metabolites in C. sativus was illustrated by co-expression networks. Roles of CsMYC2 were further checked in C. sativus by VIGS. The results of this study might give new insight into the exploration of the postharvest resistance mechanism of C. sativus induced by trypsin and provide useful information for the subsequent mining of resistance genes in C. sativus.


Assuntos
Cucumis sativus , Cucumis sativus/genética , Cucumis sativus/metabolismo , Tripsina , Reguladores de Crescimento de Plantas/metabolismo , Genes de Plantas , Transcriptoma , Regulação da Expressão Gênica de Plantas
5.
Arch Microbiol ; 204(9): 544, 2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35933647

RESUMO

In recent years, the phenomenon of microbial resistance has become increasingly serious. The generation of reactive oxygen species (ROS) during the bactericidal process of antibiotics has attracted great interest, but little research has been done on the generation of ROS in the early stage of antibiotic action. We confirmed the rapid production of ROS by flow cytometry and transmission electron microscopy (TEM). GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis indicated that the oxidative phosphorylation pathway is the key pathway of ROS production. Protein-protein interaction (PPI) network results indicate that sdhC/D are key genes in the oxidative phosphorylation pathway. The overexpression of sdhC/D resulted in a lower survival rate than the control strain after antibiotic treatments, which might be due to excess ROS induced by sdhC/D overexpression. The production of superoxide anion in the overexpress strain was significantly higher than that in the control strain, which further verified the importance of sdhC/D in the ROS release of bacteria. Current results showed that bacteria produce large amounts of ROS in the early stage of gentamicin and ampicillin action, and the regulation patterns of genes in the key pathway were consistent. sdhC/D are key genes in the early ROS release process of bacteria. Our study provides a basis for the search of ROS-related enhancers of antimicrobial action.


Assuntos
Antibacterianos , Escherichia coli , Ampicilina , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Gentamicinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
6.
J Food Sci ; 87(7): 3248-3259, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35673882

RESUMO

This study aimed to determine the main bioactive components of Cornus officinalis vinegar (COV) and assess the effects of COV on the body weight (BW) and hepatic steatosis in a nonalcoholic fatty liver disease (NAFLD) mouse model. Seven-week-old KM female mice were divided into five treatment groups: (1) Normal control (NC) group, (2) high fat diet (HFD) group, (3) low concentration treatment group (3.5% COV), (4) medium concentration treatment group (5.0% COV), and (5) high concentration treatment group (6.5% COV). Mice in the NC group were fed with a normal chow diet, and those in the other four groups were fed with a HFD known for causing obesity for 10 weeks. Then, mice in the three COV treatment groups were orally administered with COV once a day for 6 weeks. Results showed that the contents of loganin and morroniside in COV reached 16.82 and 51.17 µg/ml, respectively, and COV also contained multiple organic acids. COV significantly reduced BW, abdominal fat weight, liver weight, and the levels of glucose, triglyceride, and low-density lipoprotein cholesterol of serum and increased the levels of high-density lipoprotein cholesterol of serum (p < 0.05). COV also improved the liver function and anti-oxidant activity of liver (p < 0.05). COV treatments increased the interleukin-10 expression and reduced the tumor necrosis factor-α expression in the liver tissue of NAFLD mice (p < 0.05). Histopathological observation revealed that COV suppressed hepatic lipid accumulation and steatosis. The results suggest that COV may contribute to the alleviation of NAFLD and obesity.


Assuntos
Cornus , Hepatopatia Gordurosa não Alcoólica , Ácido Acético/metabolismo , Animais , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade
7.
World J Microbiol Biotechnol ; 38(7): 123, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35637397

RESUMO

Epsilon-poly-L-lysine (ε-PL) is an unusual biopolymer composed of L-lysine produced by several microorganisms, especially by the genus Streptomyces. Due to its excellent antimicrobial activity, good water solubility, high safety, and biodegradable nature, ε-PL with a GRAS status has been widely used in food and pharmaceutical industries. In the past years, studies have focused on the biotechnological production of ɛ-PL, the biosynthetic mechanism of microbial ɛ-PL, and its application. To provide new perspectives from recent advances, the review introduced the methods for the isolation of ɛ-PL producing strains and the biosynthetic mechanism of microbial ɛ-PL. We summarized the strategies for the improvement of ɛ-PL producing strains, including physical and chemical mutagenesis, ribosome engineering and gene engineering, and compared the different metabolic regulation strategies for improving ɛ-PL production, including medium optimization, nutrient supply, pH control, and dissolved oxygen control. Then, the downstream purification methods of ɛ-PL and its recent applications in food and medicine industries were introduced. Finally, we also proposed the potential challenges and the perspectives for the production of ε-PL.


Assuntos
Polilisina , Streptomyces , Biopolímeros/metabolismo , Biotecnologia/métodos , Meios de Cultura/metabolismo , Polilisina/química , Polilisina/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
8.
RSC Adv ; 12(8): 4852-4864, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35425473

RESUMO

Recalcitrant bacterial infection, as a worldwide challenge, causes large problems for human health and is attracting great attention. The excessive antibiotic-dependent treatment of infections is prone to induce antibiotic resistance. A variety of unique nanomaterials provide an excellent toolkit for killing bacteria and preventing drug resistance. It is of great importance to summarize the design rules of nanomaterials for inhibiting the growth of pathogenic bacteria. We completed a review involving the strategies for regulating antibacterial nanomaterials. First, we discuss the antibacterial manipulation of nanomaterials, including the interaction between the nanomaterial and the bacteria, the damage of the bacterial structure, and the inactivation of biomolecules. Next, we identify six main factors for controlling the antibacterial activity of nanomaterials, including their element composition, size dimensions, surface charge, surface topography, shape selection and modification density. Every factor possesses a preferable standard for maximizing antibacterial activity, providing universal rules for antibacterial regulation of nanomaterials. We hope this comprehensive review will help researchers to precisely design and synthesize nanomaterials, developing intelligent antibacterial agents to address bacterial infections.

9.
J Food Biochem ; 46(7): e14144, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35403710

RESUMO

To analyze the mechanism of the effect of trypsin on the preservation of Hylocereus undatus, the transcriptomic and widely targeted metabolomic profiles of H. undatus after trypsin treatment were evaluated. Among 477 genes related to lipid metabolism, 32 genes had significant expression differences. GO analysis results showed that the main enriched GO functions include pectinesterase and asparagine esterase activities, and so on. The KEGG metabolic pathway with the highest enrichment rate was fatty acid elongation. The protein-protein interaction (PPI) network analysis results showed that the PPI network of lipid metabolism is a complex biological network of scale-free cells. KCS1, QRT1, and ACC1 acted as hubs to regulate a large number of other proteins and amplify the regulatory role of trypsin to achieve a preservation effect. In addition, three unsaturated fatty acids were upregulated, while eight saturated fatty acids were downregulated. PRACTICAL APPLICATIONS: The postharvest storage of fresh fruits and vegetables brings about bottlenecks to fresh fruits and vegetables. There was also an increasing need for biopreservation techniques. Trypsin could significantly enhance the antioxidant capacity of fruits and vegetables, as a preserver for the storage of fruits and vegetables, which was convenient to operate and more economical. The regulation mechanism of trypsin on lipid metabolism in fruits and vegetables during storage of H. undatus is studied in this paper. The application of trypsin would provide a new strategy for quality control of fruit and vegetable storage.


Assuntos
Cactaceae , Superóxidos , Metabolismo dos Lipídeos , Tripsina , Verduras
10.
Int J Radiat Biol ; 97(12): 1731-1740, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34597255

RESUMO

BACKGROUND: Ionizing radiation, especially heavy ion (HI) beams, has been widely used in biology and medicine. However, the mechanism of membrane damage by such radiation remains primarily uncharacterized. PURPOSE: Transcriptomic profiles of Escherichia coli (E. coli) treated with HI illustrated the response mechanisms of the membrane, mainly ABC transporters, related genes regulated by antibiotics treatment through enrichment analyses of GO and KEGG. The networks of protein-protein interactions indicated that LsrB was the crucial one among the ABC transporters specially regulated by HI through the calculation of plugins MCODE and cytoHubba of Cytoscape. Finally, the expression pattern, GO/KEGG enrichment terms, and the interaction between nine LuxS/AI-2 quorum sensing system members were investigated. CONCLUSIONS: Above all, results suggested that HI might perform membrane damage through regulated material transport, inhibited LuxS/AI-2 system, finally impeded biofilm formation. This work provides further evidence for the role of ABC transporters, especially LsrB, in membrane damage of E. coli to HI. It will provide new strategies for improving the precise application of HI.


Assuntos
Proteínas de Transporte , Proteínas de Escherichia coli , Escherichia coli/efeitos da radiação , Íons Pesados , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Homosserina , Lactonas
11.
Chembiochem ; 22(7): 1210-1214, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33174392

RESUMO

DNA with genetic information was edited to regulate and repair the structure and function of a protein. In DNA nanotechnology, DNA with programmable information can be designed to edit the fluorescence intensity and emissive colors of DNA-stabilized silver nanoclusters (DNA/AgNCs). By introducing and moving one cytosine in the spacer of the emitter domain, we have built up a simple strategy to regulate the excitation and emission wavelengths of AgNCs. When replacing thymine in the spacer of the emitter with one cytosine, the expected excitation and emission change do not occur. However, after moving the introduced cytosine, DNA templates produce AgNCs with extremely different excitation and emission wavelengths from those of the initial template, leading to a template for near-infrared (NIR) emissive species with the highest fluorescence intensity. The formation of AgNCs induces the DNA template into condensed secondary structure based on an altered migration rate in PAGE. The simple strategy of moving one cytosine in a spacer in the emitter domain can enrich the library of templates for synthesizing diverse DNA/AgNCs and has great potential in bioimaging and probe design.


Assuntos
DNA/química , Nanopartículas Metálicas/química , Prata/química , Citosina/química , Eletroforese em Gel de Poliacrilamida , Espectrometria de Massas , Espectrometria de Fluorescência
12.
RSC Adv ; 11(2): 1153-1163, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35423706

RESUMO

DNA with programmable information can be used to encode the spatial organization of silver atoms. Based on the primary structures of a DNA template containing a controllable base arrangement and number, the surrounding environment and cluster together can induce the folding of the DNA template into an appropriate secondary structure for forming AgNCs with different fluorescence emissions, such as i-motif, G-quadruplex, dimeric template, triplex, monomeric or dimeric C-loop, emitter pair, and G-enhancer/template conjugate. Stimuli can induce the dynamic structural transformation of the DNA template with a recognition site for favourably or unfavourably forming AgNCs, along with varied fluorescence intensities and colours. The array of several or more of the same and different clusters can be performed on simple and complex nanostructures, while maintaining their original properties. By sorting out this review, we systematically conclude the link between the performance of AgNCs and the secondary structure of the DNA template, and summarize the precise arrangement of nanoclusters on DNA nanotechnology. This clear review on the origin and controllability of AgNCs based on the secondary structure of the DNA template is beneficial for exploring the new probe and optical devices.

13.
Appl Microbiol Biotechnol ; 101(17): 6705-6712, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28755262

RESUMO

The effects of fungal elicitor on the physicochemical and microbial responses of Streptomyces natalensis HW-2 were investigated. The results showed that the elicitor could decrease dry cell weight (DCW) by 17.7% and increase the utilization of glucose, while the curve of pH was not obviously altered. The elicitor enhanced the yield of natamycin from 1.33 to 2.49 g/L. The morphology of the colony and the mycelium treated with elicitor showed significant differences from that of control. The level of intracellular reactive oxygen species (ROS) increased to 333.8 ng/L, which was a twofold increase comparing with the control. The concentration of Ca2+ reached 421.1 nmol/L, which increased by 32.8% after the addition of the elicitor. The activities of pyruvic carboxylase and phosphoenol pyruvate carboxylase were enhanced by 27.8 and 11.9%, respectively, while citrate synthase activity decreased by 23.1% in comparison with the control.


Assuntos
Proteínas Fúngicas/farmacologia , Natamicina/biossíntese , Streptomyces/efeitos dos fármacos , Streptomyces/metabolismo , Cálcio/análise , Citrato (si)-Sintase/análise , Citrato (si)-Sintase/efeitos dos fármacos , Meios de Cultura/química , Meios de Cultura/farmacologia , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Técnicas Microbiológicas , Piruvato Carboxilase/análise , Piruvato Carboxilase/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
14.
PeerJ ; 4: e1983, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27190706

RESUMO

As a well known anti-neoplastic drug, the cytogenotoxicity of methotrexate (MTX) has received more attention in recent years. To develop a new cytoprotector to reduce the risk of second cancers caused by methotrexate, an umu test combined with a micronucleus assay was employed to estimate the cytoprotective effects of ten kinds of bioactive phytochemicals and their combinations. The results showed that allicin, proanthocyanidins, polyphenols, eleutherosides and isoflavones had higher antimutagenic activities than other phytochemicals. At the highest dose tested, the MTX genetoxicity was suppressed by 34.03%∼67.12%. Of all the bioactive phytochemical combinations, the combination of grape seed proanthocyanidins and eleutherosides from Siberian ginseng as well as green tea polyphenols and eleutherosides exhibited stronger antimutagenic effects; the inhibition rate of methotrexate-induced genotoxicity separately reached 74.7 ± 6.5% and 71.8 ± 4.7%. Pretreatment of Kunming mice with phytochemical combinations revealed an obvious reduction in micronucleus and sperm abnormality rates following exposure to MTX (p < 0.01). Moreover, significant increases in thymus and spleen indices were observed in cytoprotector candidates in treated groups. The results indicated that bioactive phytochemicals combinations had the potential to be used as new cytoprotectors.

15.
PeerJ ; 4: e1920, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27077011

RESUMO

Microbes, as one of the primary producers of the biosphere, play an important role in ecosystems. Exploring the mechanism of adaptation and resistance of microbial population to various environmental factors has come into focus in the fields of modern microbial ecology and molecular ecology. However, facing the increasingly serious problem of acoustic pollution, very few efforts have been put forth into studying the relation of single cell organisms and sound field exposure. Herein, we studied the biological effects of sound exposure on the growth of E. coli K-12 with different acoustic parameters. The effects of sound exposure on the intracellular macromolecular synthesis and cellular morphology of E. coli K-12 were also analyzed and discussed. Experimental results indicated that E. coli K-12 exposed to sound waves owned a higher biomass and a faster specific growth rate compared to the control group. Also, the average length of E. coli K-12 cells increased more than 27.26%. The maximum biomass and maximum specific growth rate of the stimulation group by 8000 Hz, 80dB sound wave was about 1.7 times and 2.5 times that of the control group, respectively. Moreover, it was observed that E. coli K-12 can respond rapidly to sound stress at both the transcriptional and posttranscriptional levels by promoting the synthesis of intracellular RNA and total protein. Some potential mechanisms may be involved in the responses of bacterial cells to sound stress.

16.
World J Microbiol Biotechnol ; 31(6): 851-63, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25752235

RESUMO

A new strain of Bacillus coagulans CGMCC 9551, which has a broad range of antibacterial activities against six main pathogenic bacteria including Escherichia coli O8, Staphylococcus aureus, Salmonella enterica subsp. enterica serovar enteritidis, Streptococcus suis, Listeria monocytogenes and Pasteurella multocida, was isolated from healthy piglet feces. In adhesion assay, the isolate exhibited a stronger adhesion to pig intestinal mucus than that of B. subtilis JT143 and L. acidophilus LY24 respectively isolated from BioPlus(®)2B and FloraFIT(®) Probiotics (P < 0.05). The adhesion activity reached 44.5 ± 3.2, 48.9 ± 2.6, 42.6 ± 3.3 and 37.6 ± 2.4% to jejunum, ileum, transverse colon and sigmoid colon, separately. The survival rate of B. coagulans CGMCC 9551 was reduced by only 20% at 4 h exposure under 0.9% w/v bile salt. The strain was fully resistant to pH 2 for 2 h with 90.1 ± 3.5% survival and susceptible to 15 antibiotics commonly used in veterinary medicine. Additionally, the bacteria showed amylase, protease and cellulase activities. The safety assessment demonstrated the lack of toxicity potential in B. coagulans CGMCC 9551 by ligated rabbit ileal loop assay, acute and subchronic toxicity test. These results implied that that the new strain of B. coagulans CGMCC 9951 isolated from healthy piglet feces has promising probiotic characteristics and offers desirable opportunities for its successful commercialization as one excellent candidate probiotic.


Assuntos
Bacillus/isolamento & purificação , Bacillus/fisiologia , Fezes/microbiologia , Probióticos/isolamento & purificação , Animais , Antibiose , Bacillus/efeitos dos fármacos , Aderência Bacteriana , Ácidos e Sais Biliares/metabolismo , Íleo/microbiologia , Íleo/fisiologia , Viabilidade Microbiana/efeitos dos fármacos , Probióticos/toxicidade , Coelhos , Suínos
17.
Appl Microbiol Biotechnol ; 97(12): 5527-34, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23463250

RESUMO

To investigate the effect of fungal elicitors on biosynthesis of natamycin in the cultures of Streptomyces natalensis HW-2, the biomass and filtrate of the broth from Aspergillus niger AS 3.6472, Penicillium chrysogenum AS 3.5163, A. oryzae AS 3.2068, and Saccharomyces cerevisiae AS 2.2081 were used to induce natamycin production in S. natalensis HW-2. The results showed that the biomass of P. chrysogenum AS 3.5163 could enhance the yield of natamycin from 0.639 to 0.875 g l(-1). The elicitor from the fermentation broth of P. chrysogenum AS 3.5163 showed the highest inducing efficiency with the yield of natamycin enhanced from 0.632 to 1.84 g l(-1). The elicitor that was cultured for 2 days showed the strongest inducing activity during the fermentation of S. natalensis HW-2 for 24 h, and the yield of natamycin was enhanced from 0.637 to 2.12 g l(-1). The biochemical parameters were examined at the end of fermentation and the results demonstrated that both the growth of cells and the concentration of residual sugar could be influenced. The residual sugar decreased from 5.03 to 4.27 g l(-1), and the biomass decreased from 10.26 to 6.87 g l(-1). Finally, the elicitor was identified as a low molecular weight substance with a similar polarity to that of butyl alcohol by primary qualitative analysis.


Assuntos
Aspergillus/química , Meios de Cultura/química , Natamicina/biossíntese , Compostos Orgânicos/isolamento & purificação , Penicillium chrysogenum/química , Saccharomyces cerevisiae/química , Streptomyces/efeitos dos fármacos , Aspergillus/crescimento & desenvolvimento , Peso Molecular , Compostos Orgânicos/química , Penicillium chrysogenum/crescimento & desenvolvimento , Saccharomyces cerevisiae/crescimento & desenvolvimento , Streptomyces/metabolismo
18.
Sheng Wu Gong Cheng Xue Bao ; 29(11): 1558-72, 2013 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-24701821

RESUMO

Fungal elicitors are a group of chemicals that can stimulate the secondary metabolite production in plants and microbial cells. After being recognized, it could enhance the expression of related genes through the signal-transduction pathway; regulate the activity of the enzyme involved in the biosynthesis of secondary metabolites. In recent years, the inducible mechanism of fungal elicitors has been studied deeply worldwide. Meanwhile, it has acquired wide concern in the area of biological industry, especially in the fermentation industry. This paper addresses the application and prospect of fungal elicitors in the secondary metabolites of plant and microbial cells.


Assuntos
Alcaloides/biossíntese , Fermentação , Fungos/metabolismo , Microbiologia Industrial/métodos , Alcaloides/genética , Camptotecina/biossíntese , Fungos/genética , Paclitaxel/biossíntese , Plantas Medicinais/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Metabolismo Secundário
19.
Pak J Biol Sci ; 16(18): 969-75, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24502157

RESUMO

It is undeniable that environmental sonic vibration can affect our emotions and mood, but so far the study of physical stimuli provoked by audible wave on single cells has been rarely concerned. To investigate the response of E. coli to audible wave exposure, the growth status and alterations in antioxidant enzyme activity were studied in liquid culture. The data showed that the growth of E. coli was promoted in the treatments of different frequencies sound wave. The most significant effect on growth promotion appeared when sound wave was maintained at 100 dB and 5000 Hz. Simultaneously, sonic vibration evoked significantly increases the level of total protein content contents. And the changes of activities of Super Oxide Dismutase (SOD) and catalase (CAT) were observed obviously. The results suggested that the growth promotion effect of audible sound may be non-linear and shows obvious frequency and intensity peculiarities. Moreover, the increase in activity of antioxidant enzymes implied that a number of active oxygen species generated in bacterial cell under the exposure of audible sound. We speculate that the audible sound may cause a secondary oxidative stress. Further studies are needed to elucidate the mechanisms of active oxygen species generation induced by audible sound.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Mecanotransdução Celular , Som , Antioxidantes/metabolismo , Catalase/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Estresse Oxidativo , Pressão , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Vibração
20.
Appl Microbiol Biotechnol ; 78(2): 201-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18183390

RESUMO

Low-energy ions exist widely in the natural world. People had neglected the interaction between low-energy ions and material; it was even more out of the question to study the relation of low-energy ions and the complicated organism until the biological effects of low-energy ion implantation were discovered in 1989. Nowadays, the value of low-energy ion beam implantation, as a new breeding way, has drawn extensive attention of biologists and breeding experts. In this review, the understanding and utilization of microbial breeding by low-energy ion beam irradiation is summarized, including the characteristics of an ion beam bioengineering facility, present status of the technology of low-energy ions for microbial breeding, and new insights into microbial biotechnology.


Assuntos
Bactérias/metabolismo , Bactérias/efeitos da radiação , Fungos/metabolismo , Fungos/efeitos da radiação , Íons , Mutagênese/efeitos da radiação , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...