Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 271(Pt 1): 132119, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816297

RESUMO

Hyaluronic acid-based hydrogels have been broadly used in medical applications due to their remarkable properties such as biocompatibility, biodegradability, super hydroscopicity, non-immunogenic effect, etc. However, the inherent weak and hydrophilic polysaccharide structure of pure hyaluronic acid (HA) hydrogels has limited their potential use in muco-adhesiveness, wound dressing, and 3D printing. In this research, we developed in-situ forming of catechol-modified HA hydrogels with improved mechanical properties involving blue-light curing crosslinking reaction. The effect of catechol structure on the physicochemical properties of HA hydrogels was evaluated by varying the content (0-40 %). The as-synthesized hydrogel demonstrated rapid prototyping, excellent wetting adhesiveness, and good biocompatibility. Furthermore, an optimized hydrogel precursor solution was used as a blue light-cured bio-ink with high efficiency and good precision and successfully prototyped a microstructure that mimicked the human hepatic lobule by using DLP 3D printing method. This catechol-modified HA hydrogel with tunable physicochemical and rapid prototyping properties has excellent potential in biomedical engineering.


Assuntos
Catecóis , Ácido Hialurônico , Hidrogéis , Ácido Hialurônico/química , Hidrogéis/química , Catecóis/química , Humanos , Impressão Tridimensional , Materiais Biocompatíveis/química , Adesividade
2.
Nanoscale ; 13(6): 3436-3453, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33538736

RESUMO

Most biofluids contain a wide variety of biochemical components that are closely related to human health. Analyzing biofluids, such as sweat and tears, may deepen our understanding in pathophysiologic conditions associated with human body, while providing a variety of useful information for the diagnosis and treatment of disorders and disease. Emerging classes of micro/nanostructured bioelectronic devices for biofluid detection represent a recent breakthrough development of critical importance in this context, including traditional biosensors (TBS) and micro/nanostructured biosensors (MNBS). Related biosensors are not restricted to flexible and wearable devices; solid devices are also involved here. This article is a timely overview of recent technical advances in this field, with an emphasis on the new insights of constituent materials, design architectures and detection methods of MNBS that support the necessary levels of biocompatibility, device functionality, and stable operation for component analysis. An additional section discusses and analyzes the existing challenges, possible solutions and future development of MNBS for detecting biofluids.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Dispositivos Eletrônicos Vestíveis , Humanos , Suor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...