Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202405417, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761059

RESUMO

Lithium-sulfur (Li-S) batteries have many advantages but still face problems such as retarded polysulfides redox kinetics and Li dendrite growth. Most reported single atom catalysts (SACs) for Li-S batteries are based on d-band transition metals whose d orbital constitutes active valence band, which is inclined to occur catalyst passivation. SACs based on 4f inner valence orbital of rare earth metals are challenging for their great difficulty to be activated. In this work, we design and synthesize the first rare earth metal Sm SACs which has electron-rich 4f inner orbital to promote catalytic conversion of polysulfides and uniform deposition of Li. Sm SACs enhance the catalysis by the activated 4f orbital through an f-d-p orbital hybridization. Using Sm-N3C3 modified separators, the half cells deliver a high capacity over 600 mAh g-1 and a retention rate of 84.3% after 2000 cycles. The fabricated S/CNTs|Sm-N3C3@PP|Sm-N3C3-Li full batteries can provide an ultra-stable cycling performance of a retention rate of 80.6% at 0.2 C after 100 cycles, one of the best full Li-S batteries. This work provides a new perspective for the development of rare earth metal single atom catalysis in electrochemical reactions of Li-S batteries and other electrochemical systems for next-generation energy storage.

2.
J Colloid Interface Sci ; 660: 997-1009, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290326

RESUMO

Zeolitic imidazolate framework-67 (ZIF-67) has been widely used as a precursor to developing efficient PtCo alloy catalysts for hydrogen evolution reaction (HER). However, traditional in-situ pyrolysis strategies involve complicated interface structure modulating processes between ZIF-67 and Pt precursors, challenging large-scale synthesis. Herein, a "pyrolysis etching-confined pyrolysis" approach is developed to design confined PtCo alloy in porous frameworks of onion carbon derived from ZIF-67. The confined PtCo alloy with Pt content of only 5.39 wt% exhibits a distinct HER activity in both acid (η10: 5 mV and Tafel: 9 mV dec-1) and basic (η10: 33 mV and Tafel: 51 mV dec-1) media and a drastic enhancement in stability. Density functional theory calculations reveal that the strong electronic interaction between Pt and Co allows favorable electron redistribution, which affords a favorable hydrogen spillover on PtCo alloy compared with that of pristine Pt(111). Operational electrochemical impedance spectroscopy demonstrates that the Faraday reaction process is facilitated under acidic conditions, while the transfer of intermediates through the electric double-layer region under alkaline conditions is accelerated. This work not only offers a universal route for high-performance Pt-based alloy catalysts with metal-organic framework (MOF) precursors but also provides experimental evidence for the role of the electric double layer in electrocatalysis reactions.

3.
Chem Commun (Camb) ; 60(8): 1027-1030, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38174354

RESUMO

Zinc-based aqueous dual-ion batteries (ADIBs) with halogen-graphite intercalation compound positive electrodes are among the most competitive candidates for next-generation electrochemical energy storage systems. However, most of the electrolytes employed have been gel-like electrolytes; hence, a fundamental understanding of the halogen storage process using fluid hydrates will be essential for constructing efficient Zn-based ADIBs. Herein, the halogen storage mechanism on a graphite electrode from fluid ZnCl2/ZnBr2 hydrates is studied by experimental and computational methods. The results indicate that the halogen storage mechanism is a competition between conversion and intercalation. Moreover, the macroscopic electrode reaction is determined by both the ion-pair solvation state at the graphite-electrolyte interface and the subsequent reactant supply is influenced by the electrode reaction rate.

4.
Small ; 20(1): e2304618, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37635111

RESUMO

The development of lithium-sulfur (Li-S) batteries is very promising and yet faces the issues of hindered polysulfides conversion and Li dendrite growth. Different from using different materials strategies to overcome these two types of problems, here multifunctional catalytic hierarchical interfaces of Ni12 P5 -Ni2 P porous nanosheets formed by Ni2 P partially in situ converted from Ni12 P5 are proposed. The unique electronic structure in the interface endows Ni12 P5 -Ni2 P effective electrocatalysis effect toward both sulfides' reduction and oxidation through reducing Gibbs free energies, indicating a bidirectional conversion acceleration. Importantly, Ni12 P5 -Ni2 P porous nanosheets with hierarchical interfaces also reduced the Li nucleation energy barrier, and a dendrite-free Li deposition is realized during the overall Li deposition and stripping steps. To this end, Ni12 P5 -Ni2 P decorated carbon nanotube/S cathode showing a high capacity of over 1500 mAh g-1 , and a high rate capability of 8 C. Moreover, the coin full cell delivered a high capacity of 1345 mAh g-1 at 0.2 C and the pouch full cell delivered a high capacity of 1114 mAh g-1 at 0.2 C with high electrochemical stability during 180° bending. This work inspires the exploration of hierarchical structures of 2D materials with catalytically active interfaces to improve the electrochemistry of Li-S full battery.

5.
Molecules ; 28(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38005302

RESUMO

The high specific capacity of transition metal sulfides (TMSs) opens up a promising new development direction for lithium-ion batteries with high energy storage. However, the poor conductivity and serious volume expansion during charge and discharge hinder their further development. In this work, trimetallic sulfide Zn-Co-Fe-S@nitrogen-doped carbon (Zn-Co-Fe-S@N-C) polyhedron composite with a core-shell structure is synthesized through a simple self-template method using ZnCoFe-ZIF as precursor, followed by a dopamine surface polymerization process and sulfidation during high-temperature calcination. The obvious space between the internal core and the external shell of the Zn-Co-Fe-S@N-C composites can effectively alleviate the volume expansion and shorten the diffusion path of Li ions during charge and discharge cycles. The nitrogen-doped carbon shell not only significantly improves the electrical conductivity of the material, but also strengthens the structural stability of the material. The synergistic effect between polymetallic sulfides improves the electrochemical reactivity. When used as an anode in lithium-ion batteries (LIBs), the prepared Zn-Co-Fe-S@N-C composite exhibits a high specific capacity retention (966.6 mA h g-1 after 100 cycles at current rate of 100 mA g-1) and good cyclic stability (499.17 mA h g-1 after 120 cycles at current rate of 2000 mA g-1).

6.
ACS Appl Mater Interfaces ; 15(34): 40451-40458, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37581380

RESUMO

The Co-N4-C single-atom catalysts (SACs) have attracted great research interest in the energy storage and conversion fields owing to 100% atom utilization. However, enhancing the Co loading for higher electrocatalytic performance is still challenging. In this context, we propose an engineering strategy to fabricate the high Co atomic loading Co-N4-C SACs based on the zeolitic imidazolate framework-67 (ZIF-67)@yeast construction. The rich amino groups provide the possibility for Co2+ ion anchorage and ZIF-67@yeast construction via the biomineralization of yeast cells. The functional design induces the formation of Co-N4-C sites and regulates the porosity for exposure of such Co-N4-C sites. As a result, the Co-N4-C sites were anchored on spherical micrometer flower carbonaceous materials through our novel strategy. The as-obtained optimal sample exhibited a Co atomic loading of 12.18 wt % and a specific surface area of 403.26 m2 g-1. High Co atomic loading and large specific surface area delivered excellent electrocatalytic kinetics as well as a high discharge voltage of 1.08 V at 10 mA cm-2 for more than 100 h in Zn-air batteries. This work represents a promising strategy for fabricating high-loading SACs with high activity and good durability.

7.
Nanomaterials (Basel) ; 12(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36500796

RESUMO

Proton exchange membrane fuel cells (PEMFCs) have attracted extensive attention because of their high efficiency, environmental friendliness, and lack of noise pollution. However, PEMFCs still face many difficulties in practical application, such as insufficient power density, high cost, and poor durability. The main reason for these difficulties is the slow oxygen reduction reaction (ORR) on the cathode due to the insufficient stability and catalytic activity of the catalyst. Therefore, it is very important to develop advanced platinum (Pt)-based catalysts to realize low Pt loads and long-term operation of membrane electrode assembly (MEA) modules to improve the performance of PEMFC. At present, the research on PEMFC has mainly been focused on two areas: Pt-based catalysts and the structural design of catalytic layers. This review focused on the latest research progress of the controllable preparation of Pt-based ORR catalysts and structural design of catalytic layers in PEMFC. Firstly, the design principle of advanced Pt-based catalysts was introduced. Secondly, the controllable preparation of catalyst structure, morphology, composition and support, and their influence on catalytic activity of ORR and overall performance of PEMFC, were discussed. Thirdly, the effects of optimizing the structure of the catalytic layer (CL) on the performance of MEA were analyzed. Finally, the challenges and prospects of Pt-based catalysts and catalytic layer design were discussed.

8.
Front Chem ; 10: 1052560, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339036

RESUMO

NiFe2O4 is a kind of promising lithium ion battery (LIB) electrode material, but its commercial applications have been limited due to the electronic insulation property and large volume expansion during the conversion reaction process, which results in rapid capacity decrease and poor cycling stability. We synthesized rambutan-like Co0.5Ni0.5Fe2O4 using the self-templating solvothermal method. The special structure of Co0.5Ni0.5Fe2O4 which was formed by the assembly of numerous nanosheets could effectively buffer the volume change during the charging and discharging process. Partial substitution of Ni with Co. in NiFe2O4 leads to Co0.5Ni0.5Fe2O4, the coexisting of both nickel and cobalt components is expected to provide more abundant redox reactions. The specific capacity of the rambutan-like Co0.5Ni0.5Fe2O4 as an anode material for LIB could reach 963 mA h g-1 at the current density of 500 mA g-1 after 200 cycles, confirming that the as-synthesized material is a promising candidate for LIBs.

9.
Front Chem ; 10: 1023003, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36226125

RESUMO

Multifunctional electrode materials with inherent conductivity have attracted extensive attention in recent years. Two-dimensional (2D) metal telluride nanomaterials are more promising owing to their strong metallic properties and unique physical/chemical merits. In this review, recent advancements in the preparation of 2D metal tellurides and their application in electrode materials are presented. First, the most available preparation methods, such as hydro/solvent thermal, chemical vapor deposition, and electrodeposition, are summarized. Then, the unique performance of metal telluride electrodes in capacitors, anode materials of Li/Na ion batteries, electrocatalysis, and lithium-sulfur batteries are discussed. Finally, significant challenges and opportunities in the preparation and application of 2D metal tellurides are proposed.

10.
ACS Appl Mater Interfaces ; 14(45): 50815-50826, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36310356

RESUMO

The use of single-atom catalysts is a promising approach to solve the issues of polysulfide shuttle and sluggish conversion chemistry in lithium-sulfur (Li-S) batteries. However, a single-atom catalyst usually contains a low content of active centers because more metal ions lead to generation of aggregation or the formation of nonatomic catalysts. Herein, a 2D conductive metal-organic framework [Co3(HITP)2] with abundant and periodic Co-N4 centers was decorated on carbon fiber paper as a functional interlayer for advanced Li-S batteries. The Co3(HITP)2-decorated interlayer exhibits a chemical anchoring effect and facilitates conversion kinetics, thus effectively restraining the polysulfide shuttle effect. Density functional theory calculations demonstrate that the Co-N4 centers in Co3(HITP)2 feature more intense electron density and more negative electrostatic potential distribution than those in the carbon matrix as the single-atom catalyst, thereby promoting the electrochemical performance due to the lower reaction Gibbs free energies and decomposition energy barriers. As a result, the optimized batteries deliver a high rate capacity of over 400 mA h g-1 at 4 C current and a satisfying capacity decay rate of 0.028% per cycle over 1000 cycles at 1 C. The designed Co3(HITP)2-decorated interlayer was used to prepare one of the most advanced Li-S batteries with excellent performance (reversible capacity of 762 mA h g-1 and 79.6% capacity retention over 500 cycles) under high-temperature conditions, implying its great potential for practical applications.

11.
J Colloid Interface Sci ; 607(Pt 2): 1625-1632, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34592549

RESUMO

The "FeMo cofactors" in biological nitrogenase play a decisive role in nitrogen reduction. Herein, a novel bionic Fe/Mo bimetallene was applied in photocatalytic nitrogen reduction. The surface coating Fe/Mo bimetallene of Bi2Mo0.3W0.7O6 (BMWO) nanocrystals could effectively promote the separation and transportation of photogenerated carriers by multi-electron redox reactions and deliver 2.8 times longer photo-carrier lifetime. Consequently, the nitrogen fixation activity of Fe/Mo bimetallene-coated BMWO nanocrystal photocatalyst was obviously enhanced (218.93 µmol g-1h-1), which was about 4.8 times that of unmodified BMWO nanocrystals. This work provides a novel approach to design bionic Fe/Mo bimetallene-modified inorganic semiconductor photocatalysts for nitrogen reduction.


Assuntos
Biônica , Nitrogênio , Molibdoferredoxina/metabolismo , Fixação de Nitrogênio , Nitrogenase/metabolismo
12.
Chemistry ; 27(8): 2555, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33506559

RESUMO

Invited for the cover of this issue is Qinghua Gong, Guowei Zhou, and co-workers at Qilu University of Technology. The dial represents the etching time of SiOx yolk in NaOH solution and the brightness of the Chinese red lantern represents the electrochemical performance of the composites. Read the full text of the article at 10.1002/chem.202003246.

13.
RSC Adv ; 11(16): 9746-9755, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35423437

RESUMO

Photocatalytic performance is influenced by two contradictory factors, which are light absorption range and separation of charge carriers. Loading noble metals with nanosized interfacial contact is expected to improve the separation and transfer of photo-excited charge carriers while enlarging the light absorption range of the semiconductor photocatalyst. Therefore, it should be possible to improve the photocatalytic performance of pristine nontypical stoichiometric semiconductor photocatalysts by loading a specific noble metal. Herein, a series of novel Pt-Bi4V2O11 photocatalysts have been successfully prepared via a surface reduction technique. The crystal structure, morphology, and photocatalytic performance, as well as photo-electron properties of the as-synthesized samples were fully characterized. Moreover, the series of Pt-Bi4V2O11 samples were evaluated to remove typical organic pollutants, rhodamine B and enrofloxacin, from aqueous solutions. The photoluminescence, quenching experiments and the electron spin resonance technique were utilized to identify the effective radicals during the photocatalytic process and understand the photocatalytic mechanism. The photocatalytic performance of Pt-Bi4V2O11 was tremendously enhanced compared with pristine Bi4V2O11, and there was additional ˙O2- produced during the photocatalytic process. This study deeply investigated the relation between the separation of charge carriers and the light harvesting, and revealed a promising strategy for fabricating efficient photocatalysts for both dyes and antibiotics.

14.
Chemistry ; 27(8): 2654-2661, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32866338

RESUMO

This work reports the preparation of unique hierarchical yolk/double-shelled SiOx @TiO2 @C nanospheres with different voids by a facile sol-gel method combined with carbon coating. In the preparation process, SiOx nanosphere is used as a hard template. Etch time of SiOx yolk affects the morphology and electrochemical performance of SiOx @TiO2 @C. With the increase in etch time, the yolk/double-shelled SiOx @TiO2 @C with 15 and 30 nm voids and the TiO2 @C hollow nanospheres are obtained. The yolk/double-shelled SiOx @TiO2 @C nanospheres exhibit remarkable lithium-ion battery performance as anodes, including high lithium storage capacity, outstanding rate capability, good reversibility, and stable long-term cycle life. The unique structure can accommodate the large volume change of the SiOx yolk, provide a unique buffering space for the discharge/charge processes, improve the structural stability of the electrode material during repeated Li+ intercalation/deintercalation processes, and enhance the cycling stability. The SiOx @TiO2 @C with 30 nm void space exhibits a high discharge specific capacity of ≈1195.4 mA h g-1 at the current density of 0.1 A g-1 after 300 cycles and ≈701.1 mA h g-1 at 1 A g-1 for over 800 cycles. These results suggest that the proposed particle architecture is promising and may have potential applications in improving various high performance anode materials.

15.
Nanomaterials (Basel) ; 10(10)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050348

RESUMO

At present, lithium-ion batteries (LIBs) have received widespread attention as substantial energy storage devices; thus, their electrochemical performances must be continuously researched and improved. In this paper, we demonstrate a simple self-template solvothermal method combined with annealing for the synthesis of NiFe2O4 yolk-shell (NFO-YS) and NiFe2O4 solid (NFO-S) nanospheres by controlling the heating rate and coating them with a carbon layer on the surface via high-temperature carbonization of resorcinol and formaldehyde resin. Among them, NFO-YS@C has an obvious yolk-shell structure, with a core-shell spacing of about 60 nm, and the thicknesses of the NiFe2O4 shell and carbon shell are approximately 15 and 30 nm, respectively. The yolk-shell structure can alleviate volume changes and shorten the ion/electron diffusion path, while the carbon shell can improve conductivity. Therefore, NFO-YS@C nanospheres as the anode materials of LIBs show a high initial capacity of 1087.1 mA h g-1 at 100 mA g-1, and the capacity of NFO-YS@C nanospheres impressively remains at 1023.5 mA h g-1 after 200 cycles at 200 mA g-1. The electrochemical performance of NFO-YS@C is significantly beyond NFO-S@C, which proves that the carbon coating and yolk-shell structure have good stability and excellent electron transport ability.

16.
Nanoscale ; 11(43): 20579-20588, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31637397

RESUMO

Lithium sulfur (Li-S) batteries are considered as one of the most promising next generation energy storage systems, whereas their intrinsic drawbacks impeded their practical implementation. Herein, a nitrogen doped porous carbon polyhedron coupled with a well distributed α-CoS/Co heterostructure mediator was designed and prepared as the sulfur cathode host for lithium sulfur batteries. The α-CoS/Co heterostructure on a nitrogen doped carbon polyhedron (NCP) not only provides a strong adsorption interaction towards soluble polysulfides, but more importantly, also promotes the fast conversion of polysulfides to insoluble products, chemically suppressing the shuttling of polysulfides through the simultaneous advantages of α-CoS and Co. As a result, the α-CoS/Co-NCP-S cathode exhibits high sulfur utilization with a 1611.4 mA h g-1 first discharge capacity and a well satisfactory redox cycling stability with a low capacity fade rate of 0.042% per cycle at 0.5 C for over 800 cycles. Moreover, the hybrid cathode delivers 860.2 mA h g-1 specific capacity for a high sulfur loading of 4.8 mg cm-2 with remarkable cycling performance.

17.
Chemistry ; 22(36): 12859-67, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27464522

RESUMO

Samarium and nitrogen co-doped Bi2 WO6 nanosheets were successfully synthesized by using a hydrothermal method. The crystal structures, morphology, elemental compositions, and optical properties of the prepared samples were investigated. The incorporation of samarium and nitrogen ions into Bi2 WO6 was proved by X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. UV/Vis diffuse reflectance spectroscopy indicated that the samarium and nitrogen co-doped Bi2 WO6 possessed strong visible-light absorption. Remarkably, the samarium and nitrogen co-doped Bi2 WO6 exhibited higher photocatalytic activity than single-doped and pure Bi2 WO6 under visible-light irradiation. Radical trapping experiments indicated that holes (h(+) ) and superoxide radicals ((.) O2 (-) ) were the main active species. The results of photoluminescence spectroscopy and photocurrent measurements demonstrated that the recombination rate of the photogenerated electrons and holes pairs was greatly depressed. The enhanced activity was attributed to the synergistic effect of the in-built Sm(3+) /Sm(2+) redox pair centers and the N-doped level. The mechanism of the excellent photocatalytic activity of Sm-N-Bi2 WO6 is also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...