Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 89(11): 7859-7864, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38773955

RESUMO

Regioselective methods to access alkylated tetrazoles still remain a challenging goal. Herein, we describe a novel regioselective protocol for N2-arylation of tetrazoles with diazo compounds using inexpensive Al(OTf)3. This reaction could be conducted under mild conditions to access a diverse array of alkylated tetrazoles with 2-substituted tetrazoles as the major products, demonstrating a comprehensive range of substrate compatibility and excellent functional group compatibility. Mechanistic studies revealed a carbene-free process in this reaction procedure. Furthermore, the scale-up reaction and transformations of the N2-arylation of tetrazole products demonstrated the potential of this strategy.

2.
Eur J Pharm Biopharm ; 200: 114327, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759900

RESUMO

P-glycoprotein (P-gp) overexpressed mutidrug resistance (MDR) is currently a key factor limiting the effectiveness of breast cancer chemotherapy. Systemic administration based on P-gp-associated mechanism leads to severe toxic side effects. Here, we designed a T7 peptide-modified mixed liposome (T7-MLP@DTX/SchB) that, by active targeting co-delivering chemotherapeutic agents and P-gp inhibitors, harnessed synergistic effects to improve the treatment of MDR breast cancer. This study established drug-resistant cell models and animal models. Subsequently, comprehensive evaluations involving cell uptake, cell apoptosis, cellular toxicity assays, in vivo tumor-targeting capability, and anti-tumor activity assays were conducted to assess the drug resistance reversal effects of T7-MLP@DTX/SchB. Additionally, a systematic assessment of the biosafety profile of T7-MLP@DTX/SchB was executed, including blood profiles, biochemical markers, and histopathological examination. It was found that this co-delivery strategy successfully exerted the synergistic effects, since there was a significant tumor growth inhibitory effect on multidrug-resistant breast cancer. Targeted modification with T7 peptide enhanced the therapeutic efficacy remarkably, while vastly ameliorating the biocompatibility compared to free drugs. The intriguing results supported the promising potential use of T7-MLP@DTX/SchB in overcoming MDR breast cancer treatment.


Assuntos
Neoplasias da Mama , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Lipossomos , Camundongos Endogâmicos BALB C , Feminino , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Humanos , Camundongos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Células MCF-7 , Fragmentos de Peptídeos/administração & dosagem , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Colágeno Tipo IV
3.
Bioorg Chem ; 147: 107380, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636432

RESUMO

The COVID-19 pandemic continues to pose a threat to global health, and sounds the alarm for research & development of effective anti-coronavirus drugs, which are crucial for the patients and urgently needed for the current epidemic and future crisis. The main protease (Mpro) stands as an essential enzyme in the maturation process of SARS-CoV-2, playing an irreplaceable role in regulating viral RNA replication and transcription. It has emerged as an ideal target for developing antiviral agents against SARS-CoV-2 due to its high conservation and the absence of homologous proteases in the human body. Among the SARS-CoV-2 Mpro inhibitors, non-peptidic compounds hold promising prospects owing to their excellent antiviral activity and improved metabolic stability. In this review, we offer an overview of research progress concerning non-peptidic SARS-CoV-2 Mpro inhibitors since 2020. The efforts delved into molecular structures, structure-activity relationships (SARs), biological activity, and binding modes of these inhibitors with Mpro. This review aims to provide valuable clues and insights for the development of anti-SARS-CoV-2 agents as well as broad-spectrum coronavirus Mpro inhibitors.


Assuntos
Antivirais , Proteases 3C de Coronavírus , Inibidores de Proteases , SARS-CoV-2 , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Humanos , Antivirais/farmacologia , Antivirais/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Relação Estrutura-Atividade , Tratamento Farmacológico da COVID-19 , Estrutura Molecular , COVID-19/virologia
4.
J Org Chem ; 89(7): 5038-5048, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38517950

RESUMO

A novel method is described for the synthesis of 2,4-disubstituted oxazole and thiazole derivates via the coupling of α-diazoketones with (thio)amides or thioureas using trifluoromethanesulfonic acid (TfOH) as a catalyst. This protocol is characterized by mild reaction conditions, metal-free, and simplicity and also features good functional group tolerance, good to excellent yields, and a broad substrate scope with more than 40 examples. Experimental studies suggest a mechanism involving 2-oxo-2-phenylethyl trifluoromethanesulfonate as the key intermediate.

5.
Org Lett ; 25(32): 6012-6017, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37555637

RESUMO

A catalyst- and temperature-controlled selective synthesis of sulfonamide and sulfones from N-tosylhydrazones and MBH carbonates has been developed. The use of palladium catalysts exclusively leads to sulfonamide products at room temperature, whereas the selective synthesis of sulfones is dominant for a temperature-controlled coupling reaction without palladium catalysis. Importantly, the catalyst- or temperature-controlled reaction exhibits high nucleophilicity rather than carbene reactivity in these transformations.

6.
Bioorg Chem ; 136: 106549, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37119785

RESUMO

Human immunodeficiency virus type 1 (HIV-1), a lentivirus that causes acquired immunodeficiency syndrome (AIDS), poses a serious threat to global public health. Since the advent of the first drug zidovudine, a number of anti-HIV agents acting on different targets have been approved to combat HIV/AIDS. Among the abundant heterocyclic families, quinoline and isoquinoline moieties are recognized as promising scaffolds for HIV inhibition. This review intends to highlight the advances in diverse chemical structures and abundant biological activity of quinolines and isoquinolines as anti-HIV agents acting on different targets, which aims to provide useful references and inspirations to design and develop novel HIV inhibitors for medicinal chemists.


Assuntos
Síndrome da Imunodeficiência Adquirida , Fármacos Anti-HIV , Inibidores da Protease de HIV , HIV-1 , Quinolinas , Humanos , Saquinavir/uso terapêutico , Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Inibidores da Protease de HIV/farmacologia , Inibidores da Protease de HIV/uso terapêutico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Isoquinolinas/farmacologia , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico
7.
Org Lett ; 25(7): 1172-1177, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36779869

RESUMO

Chiral benzoxazinones and 4H-3,1-benzoxazines as important motifs are widely found in abundant pharmaceuticals and biological molecules. We herein successfully developed the first kinetic resolution (KR) process of racemic benzoxazinones through Ir-catalyzed asymmetric intramolecular allylation, furnishing a wide range of chiral benzoxazinones and 4H-3,1-benzoxazines with excellent results via outstanding KR performances (with the s factor up to 170). This protocol exhibited broad substrate scope generality and good functional group tolerance, and the chiral 4H-3,1-benzoxazine products could be readily transformed to other useful optically active heterocycles.

8.
Front Chem ; 11: 1098331, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36733714

RESUMO

Proteolysis targeting chimeras (PROTACs) technology can realize the development of drugs for non-druggable targets that are difficult to achieve with traditional small molecules, and therefore has attracted extensive attention from both academia and industry. Up to now, there are more than 600 known E3 ubiquitin ligases with different structures and functions, but only a few have developed corresponding E3 ubiquitin ligase ligands, and the ligands used to design PROTAC molecules are limited to a few types such as VHL (Von-Hippel-Lindau), CRBN (Cereblon), MDM2 (Mouse Doubleminute 2 homolog), IAP (Inhibitor of apoptosis proteins), etc. Most of the PROTAC molecules that have entered clinical trials were developed based on CRBN ligands, and only DT2216 was based on VHL ligand. Obviously, the structural optimization of E3 ubiquitin ligase ligands plays an instrumental role in PROTAC technology from bench to bedside. In this review, we review the structure optimization process of E3 ubiquitin ligase ligands currently entering clinical trials on PROTAC molecules, summarize some characteristics of these ligands in terms of druggability, and provide some preliminary insights into their structural optimization. We hope that this review will help medicinal chemists to develop more druggable molecules into clinical studies and to realize the greater therapeutic potential of PROTAC technology.

9.
Eur J Med Chem ; 248: 115114, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36640458

RESUMO

The hybrids of delavirdine and piperdin-4-yl-aminopyrimidine (DPAPYs) were designed from two excellent HIV-1 NNRTIs delavirdine and piperidin-4-yl-aminopyrimidine via molecular hybridization. The target compounds 4a-r were prepared and evaluated for their cellular anti-HIV activities and cytotoxicities as well as the inhibitory activities against HIV-1 reverse transcriptase (RT). All the newly synthesized compounds demonstrated moderate to excellent potency against wild-type (WT) HIV-1 with EC50 values in a range of 5.7 to 0.0086 µM and against RT with IC50 values ranging from 12.0 to 0.11 µM, indicating that the DPAPYs were specific RT inhibitors. Among all, 4d displayed the most potent activity against WT HIV-1 (EC50 = 8.6 nM, SI = 2151). Gratifyingly, it exhibited good to excellent potency against the single HIV-1 mutants L100I, K103N, Y181C, Y188L, E138K, as well as the double mutant F227L + V106A. Furthermore, the preliminary structure-activity relationships were summarized, molecular modeling was conducted to explore the binding mode of DPAPYs and HIV-1 RT, and their physicochemical properties were also predicted.


Assuntos
Fármacos Anti-HIV , HIV-1 , Fármacos Anti-HIV/química , Delavirdina , Desenho de Fármacos , Transcriptase Reversa do HIV , HIV-1/metabolismo , Inibidores da Transcriptase Reversa/química , Relação Estrutura-Atividade
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 269: 120789, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34968834

RESUMO

As a colorless, highly toxic and widely used chemical reagent, phosgene poses a potentially serious threat to public health and environmental safety. Therefore, there is an urgent need to develop a simple and sensitive method for detecting phosgene. In this work, a ratiometric fluorescent probe (NED) for phosgene was developed by utilizing 4-substituted 1,8-naphthimide unit as the fluorophore and ethylenediamine as the recognition moiety. The probe NED undergoes intramolecular cyclization reaction with phosgene, resulting in a remarkable ratiometric fluorescence response. The probe NED displays high sensitivity (LOD = 4.9 nM), excellent ratiometric fluorescence signal, and high selectivity toward phosgene over other relevant analytes. In addition, paper test strip capable of visually detecting gaseous phosgene has also been fabricated.


Assuntos
Fosgênio , Ciclização , Corantes Fluorescentes , Gases , Espectrometria de Fluorescência
11.
Eur J Med Chem ; 225: 113787, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34425310

RESUMO

HIV-1 integrase (IN) is a key enzyme in viral replication that catalyzes the covalent integration of viral cDNA into the host genome. Currently, five HIV-1 IN strand transfer inhibitors (INSTIs) are approved for clinical use. These drugs represent an important addition to the armamentarium for antiretroviral therapy. This review briefly illustrates the development history of INSTIs. The characteristics of the currently approved INSTIs, as well as their future perspectives, are critically discussed.


Assuntos
Fármacos Anti-HIV/farmacologia , Desenvolvimento de Medicamentos , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/metabolismo , HIV-1/efeitos dos fármacos , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Inibidores de Integrase de HIV/síntese química , Inibidores de Integrase de HIV/química , HIV-1/enzimologia , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular
12.
Bioorg Med Chem ; 55: 116597, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34995858

RESUMO

The α- and ß-tubulins are the major polypeptide components of microtubules (MTs), which are attractive targets for anticancer drug development. Indole derivatives display a variety of biological activities including antitumor activity. In recent years, a great number of indole derivatives as tubulin polymerization inhibitors have sprung up, which encourages medicinal chemists to pursue promising inhibitors with improved antitumor activities, excellent physicochemical, pharmacokinetic and pharmacodynamic properties. In this review, the recent progress from 2010 to present in the development of indole derivatives as tubulin polymerization inhibitors was summarized and reviewed, which would provide useful clues and inspirations for further design of outstanding tubulin polymerization inhibitors.

13.
Curr Opin Pharmacol ; 54: 166-172, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33176248

RESUMO

HIV-1 reverse transcriptase inhibitors (RTIs) are indispensable components of highly active antiretroviral therapy (HAART), which has achieved great success in controlling AIDS epidemic in reducing drastically the morbidity and mortality of HIV-infected patients. RTIs are divided into two categories, nucleoside reverse transcriptase inhibitors (NRTIs) and nonnucleoside reverse transcriptase inhibitors (NNRTIs). In this review, the recent discoveries in NRTIs and NNRTIs, including approved anti-HIV drugs and noteworthy drug candidates in different development stages, are summarized, and their future direction is prospected.


Assuntos
Infecções por HIV/tratamento farmacológico , HIV-1 , Inibidores da Transcriptase Reversa/uso terapêutico , Humanos
14.
Drug Des Devel Ther ; 14: 1779-1798, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32440103

RESUMO

BACKGROUND: Radiotherapy has an ameliorative effect on a wide variety of tumors, but hepatocellular carcinoma (HCC) is insensitive to this treatment. Overactivated mammalian target of rapamycin (mTOR) plays an important part in the resistance of HCC to radiotherapy; thus, mTOR inhibitors have potential as novel radiosensitizers to enhance the efficacy of radiotherapy for HCC. METHODS: A lead compound was found based on pharmacophore modeling and molecular docking, and optimized according to the differences between the ATP-binding pockets of mTOR and PI3K. The radiosensitizing effect of the optimized compound (2a) was confirmed by colony formation assays and DNA double-strand break assays in vitro. The discovery and preclinical characteristics of this compound are described. RESULTS: The key amino acid residues in mTOR were identified, and a precise virtual screening model was constructed. Compound 2a, with a 4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine scaffold, exhibited promising potency against mTOR (mTOR IC50=7.1 nmol/L (nM)) with 126-fold selectivity over PI3Kα. Moreover, 2a significantly enhanced the sensitivity of HCC to radiotherapy in vitro in a dose-dependent manner. CONCLUSION: A new class of selective mTOR inhibitors was developed and their radiosensitization effects were confirmed. This study also provides a basis for developing mTOR-specific inhibitors for use as radiosensitizers for HCC radiotherapy.


Assuntos
Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Pirimidinonas/farmacologia , Radiossensibilizantes/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Modelos Moleculares , Estrutura Molecular , Pirimidinonas/síntese química , Pirimidinonas/química , Radiossensibilizantes/síntese química , Radiossensibilizantes/química , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/metabolismo
15.
Eur J Med Chem ; 186: 111864, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31767136

RESUMO

A series of indazolyl-substituted piperidin-4-yl-aminopyrimidines (IPAPYs) were designed from two potent HIV-1 NNRTIs piperidin-4-yl-aminopyrimidine 3c and diaryl ether 4 as the lead compounds by molecular hybridization strategy. The target molecules 5a-q were synthesized and evaluated for their anti-HIV activities and cytotoxicities in MT-4 cells. 5a-q displayed moderate to excellent activities against wild-type (WT) HIV-1 with EC50 values ranging from 1.5 to 0.0064 µM. Among them, 5q was regarded as the most excellent compound against WT HIV-1 (EC50 = 6.4 nM, SI = 2500). And also, it displayed potent activities against K103 N (EC50 = 0.077 µM), Y181C (EC50 = 0.11 µM), E138K (EC50 = 0.057 µM), and moderate activity against double mutants RES056 (EC50 = 8.7 µM). Moreover, the structure-activity relationships (SARs) were summarized, and the molecular docking was performed to investigate the binding mode of IPAPYs and HIV-1 reverse transcriptase.


Assuntos
Fármacos Anti-HIV/farmacologia , Desenho de Fármacos , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV/efeitos dos fármacos , Indazóis/farmacologia , Piperidinas/farmacologia , Pirimidinas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Relação Dose-Resposta a Droga , Transcriptase Reversa do HIV/metabolismo , Humanos , Indazóis/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/química , Pirimidinas/síntese química , Pirimidinas/química , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/química , Relação Estrutura-Atividade
16.
Eur J Med Chem ; 174: 277-291, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31051402

RESUMO

Since the entrance channel was proposed as a new binding site in non-nucleoside reverse transcriptase inhibitor binding pocket (NNIBP) of HIV-1 reverse transcriptase (RT) in 2012, a huge number of HIV-1 inhibitors acting on this target have sprung up, aiming to discover promising inhibitors with excellent antiviral activities, physicochemical properties, and so on. From 2012 to 2018, many noteworthy compounds have been continuously discovered. In this review, the recent progress in HIV-1 inhibitors targeting the entrance channel of HIV-1 NNIBP was summarized and reviewed, which would provide useful clues and inspiration for further design of HIV-1 inhibitors.


Assuntos
Fármacos Anti-HIV/farmacologia , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Compostos Heterocíclicos/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Animais , Fármacos Anti-HIV/química , Sítios de Ligação , Linhagem Celular Tumoral , Transcriptase Reversa do HIV/química , Compostos Heterocíclicos/química , Humanos , Simulação de Acoplamento Molecular , Inibidores da Transcriptase Reversa/química
17.
Chemistry ; 25(33): 7866-7873, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-30893491

RESUMO

A fluorophilic fluorescent probe based on a perfluoroalkyl-substituted bis(binaphthyl) compound was designed and synthesized. It displayed a highly enantioselective fluorescence response toward structurally diverse amino acids in a biphasic fluorous/aqueous system with enantiomeric fluorescent enhancement ratio (ef; ΔID /ΔIL ) values up to 45.2 (histidine). It can be used to determine the enantiomeric compositions of amino acids and also allows the amino acid enantiomers to be visually discriminated. NMR and mass-spectroscopic investigations provided insights into the observed high enantioselectivity. This biphasic fluorescent recognition was used to determine the enantiomeric composition of the crude phenylalanine products generated by an enzyme-catalyzed asymmetric hydrolysis under various reaction conditions. The fluorous-phase-based fluorescence measurement under the biphasic conditions was able to minimize the interference of other reaction components and thus has potential in asymmetric reaction screening.

18.
J Am Chem Soc ; 141(1): 175-181, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30525565

RESUMO

A novel fluorescent probe based on a bisbinaphthyl structure has been designed and synthesized. This compound in combination with Zn(II) has exhibited highly enantioselective fluorescence enhancement with 13 common free amino acids. For example, its enantiomeric fluorescent enhancement ratios ( ef or Δ IL/Δ ID) in the presence of the following amino acids are extremely high: 177 for valine, 199 for methionine, 186 for phenylalanine, 118 for leucine, and 89 for alanine. The observed high enantioselectivity and the extent of the substrate scope are unprecedented in the fluorescent recognition of free amino acids. This fluorescent probe can be applied to determine the enantiomeric composition of the structurally diverse chiral amino acids. NMR and mass spectroscopic investigations have provided clues to elucidate the observed high enantioselectivity.

19.
Mol Divers ; 23(1): 107-121, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30051344

RESUMO

Diarylpyrimidines (DAPYs), a type of effective HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs), have been considered as one of the most successful agents for treating AIDS. A number of structurally diverse DAPYs have been designed and synthesized in the past decade, and most of them exhibited potent anti-HIV-1 activities; however, the structure-activity relationships of recently reported DAPYs and their pharmacophore features that interacted with HIV-1 reverse transcriptase (RT) remain to be studied. In the present study, molecular docking studies were first performed on three novel classes of DAPYs to study their binding pattern in the HIV-1 RT. Based on the docking conformations of these DAPYs, 3D-QSAR models were constructed using CoMSIA and Topomer CoMFA methods, and pharmacophore models were also built using distance comparison technique. All selected DAPYs presented preferred U- or L-shaped conformations while being docked into the non-nucleoside inhibitor-binding pocket of the HIV-1 RT. The best CoMSIA model exhibited powerful predictivity, with satisfactory statistical parameters such as a q2 of 0.572, an r2 of 0.952, and an [Formula: see text] of 0.728. Contour maps of the best CoMSIA model were in accordance with those of the Topomer CoMFA model, giving the insight into the feature requirements of DAPYs for the anti-HIV-1 activity. Three potential pharmacophore models were constructed, and each of them was consisted of five hypothesis features. All results suggested that the aromatic ring on the left wing of DAPYs and the central pyrimidine ring contained key pharmacophore features for the anti-HIV-1 activity, and also indicated that the right wing of DAPYs had potential for further structural modification to improve activity. Eight novel DAPY molecules with potential anti-HIV-1 activities were designed on the basis of the obtained results. The findings in this study might provide important information for further design and development of novel HIV-1 NNRTIs.


Assuntos
Fármacos Anti-HIV , Modelos Moleculares , Pirimidinas , Inibidores da Transcriptase Reversa , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Relação Quantitativa Estrutura-Atividade , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia
20.
Eur J Med Chem ; 158: 371-392, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30223123

RESUMO

HIV-1 nonnucleoside reverse transcriptase inhibitors (NNRTIs) have been playing an important role in the fight against acquired immunodeficiency syndrome (AIDS). Diarylpyrimidines (DAPYs) as the second generation NNRTIs, represented by etravirine (TMC125) and rilpivirine (TMC278), have attracted extensive attention due to their extraordinary potency, high specificity and low toxicity. However, the rapid emergence of drug-resistant virus strains and dissatisfactory pharmacokinetics of DAPYs present new challenges. In the past two decades, an increasing number of novel DAPY derivatives have emerged, which significantly enriched the structure-activity relationship of DAPYs. Studies of crystallography and molecular modeling have afforded a lot of useful information on structural requirements of NNRTIs, which contributes greatly to the improvement of their resistance profiles. In this review, we reviewed the discovery history and their evolution of DAPYs including their structural modification, derivatization and scaffold hopping in continuous pursuit of excellent anti-HIV drugs. And also, we discussed the prospect of DAPYs and the directions of future efforts.


Assuntos
Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/enzimologia , Pirimidinas/química , Pirimidinas/farmacologia , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Transcriptase Reversa do HIV/metabolismo , HIV-1/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA