Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37374566

RESUMO

The fatigue damage of a local joint is the key factor accounting for the structural failure of a jacket-type offshore wind turbine. Meanwhile, the structure experiences a complex multiaxial stress state under wind and wave random loading. This paper aims to develop a multi-scale modeling method for a jacket-type offshore wind turbine, in which local joints of the jacket are modeled in a detail by using solid elements, and other components are modeled via the common beam element. Considering the multiaxial stress state of the local joint, multi-axial fatigue damage analysis based on the multiaxial S-N curve is performed using equivalent Mises and Lemaitre methods. The uniaxial fatigue damage data of the jacket model calculated using the multi-scale finite element model are compared with those of the conventional beam model. The results show that the tubular joint of jacket leg and brace connections can be modeled using the multi-scale method, since the uniaxial fatigue damage degree can reach a 15% difference. The comparison of uniaxial and multiaxial fatigue results obtained using the multi-scale finite element model shows that the difference can be about 15% larger. It is suggested that the multi-scale finite element model should be used for better accuracy in the multiaxial fatigue analysis of the jacket-type offshore wind turbine under wind and wave random loading.

2.
ACS Omega ; 8(8): 7883-7890, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36872958

RESUMO

With the advancement of science and technology, single-function ceramics have been difficult to meet the rapid development of electronic components. It is of great significance to find and develop multifunctional ceramics with excellent performance and environmental friendliness (such as good energy storage and transparency). Especially, the realization of its excellent performance under low electric fields has more reference and practical value. In this study, by Bi(Zn0.5Ti0.5)O3 (BZT) modification in (K0.5Na0.5)NbO3 (KNN), reducing grain size, and increasing band gap energy, the purpose of improving energy storage performance and transparency has been achieved under low electric field. The results show that the submicron average grain size decreased to 0.9 µm and the band gap energy (E g) increased to 2.97 eV for 0.90KNN-0.10BZT ceramics. The transparency is up to 69.27% in the near-infrared region (1344 nm) and the energy storage density is 2.16 J/cm3 under 170 kV/cm. Moreover, the 0.90KNN-0.10BZT ceramic exhibits a power density (P D) of 17.50 MW/cm3 and the stored energy can be discharged in 1.60 µs at 140 kV/cm. This revealed a potential application of KNN-BZT ceramic as an energy storage and transparent capacitor in the electronics industry.

3.
Materials (Basel) ; 15(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35269202

RESUMO

This paper investigates the interphase effect on the macro nonlinear mechanical behavior of cement-based solidified sand mixture (CBSSM) using a finite element numerical simulation method. CBSSM is a multiphase composite whose main components are soil, cement, sand and water, often found in soft soil foundation reinforcement. The emergence of this composite material can reduce the cost of soft soil foundation reinforcement and weaken silt pollution. Simplifying the CBSSM into a three-phase structure can efficiently excavate the interphase effects, that is, the sand phase with higher strength, the cement-based solidified soil phase (CBSS) with moderate strength, and the interphase with weaker strength. The interphase between aggregate and CBSS in the mixture exhibits the weak properties due to high porosity but gets little attention. In order to clarify the mechanical relationship between interphase and CBSSM, a bilinear Cohesive Model (CM) was selected for the interphase, which can phenomenologically model damage behaviors such as damage nucleation, initiation and propagation. Firstly, carry out the unconfined compression experiments on the CBSSM with different artificial gradations and then gain the nonlinear stress-strain curves. Secondly, take the Monte Carlo method to establish the numerical models of CBSSM with different gradations, which can generate geometric models containing randomly distributed and non-overlapping sand aggregates in Python by code. Then, import the CBSSM geometric models into the finite element platform Abaqus and implement the same boundary conditions as the test. Fit experimental nonlinear stress-strain curves and verify the reliability of numerical models. Finally, analyze the interphase damage effect on the macroscopic mechanical properties of CBSSM by the most reliable numerical model. The results show that there is an obviously interphase effect on CBSSM mechanical behavior, and the interphase with greater strength and stiffness ensures the macro load capacity and service life of the CBSSM; a growth in the interphase number can also adversely affect the durability of CBSSM, which provides a favorable reference for the engineering practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...