Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; : e2400045, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365211

RESUMO

Non-traditional intrinsic luminescent (NTIL) polymer is an emerging field, and its color-tunable modification is highly desirable but still rarely investigated. Here, a click chemistry approach for the color-tunable modifications of NTIL polymers by introducing clickable polymerization-induced emission luminogen (PIEgen), is demonstrated. Through Cu-catalyzed azide-alkyne cycloaddition click chemistry, a series of PIEgens is successful prepared, which is further polymerized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Interestingly, after clickable modification, these monomers are nonemissive in both solution and aggregation states; while, the corresponding polymers exhibit intriguing aggregation-induced emission (AIE) characteristics, confirming their PIEgen characteristics. By varying alkynyl substitutions, color-tunable NTIL polymers are achieved with emission wavelength varying from 448 to 498 nm, revealing a series of PIEgens and verifying the importance of modification of NTIL polymers. Further luminescence energy transfer application is carried out as well. This work therefore designs a series of clickable PIEgens and opens a new avenue for the modification of NTIL polymers via click chemistry, which may cause inspirations to the research fields including luminescent polymer, NTIL, click chemistry, AIE and modification.

2.
Chemistry ; 30(20): e202400045, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38298110

RESUMO

Cinnamic ester is a common and abundant chemical substance, which can be extracted from natural plants. Compared with traditional esters, cinnamic ester contains α,ß-unsaturated carbonyl structure with multiple reactive sites, resulting in more abundant reactivities and chemical structures. Here, a versatile polymerization-induced emission (PIE) is successfully demonstrated through Barbier polymerization of cinnamic ester. Attributed to its abundant reactivities of α,ß-unsaturated carbonyl structure, Barbier polymerization of cinnamic esters with different organodihalides gives polyalcohol and polyketone via 1,2-addition and 1,4-addition, respectively, which is also confirmed by small molecular model reactions. Meanwhile, these organodihalides dependant polyalcohol and polyketone exhibit different non-traditional intrinsic luminescence (NTIL) from aggregation-induced emission (AIE) type to aggregation-caused quenching (ACQ) type, where novel PIE luminogens (PIEgens) are revealed. Further potential applications in explosive detection are carried out, where it achieves TNT detection sensitivity at ppm level in solution and ng level on the test paper. This work therefore expands the structure and functionality libraries of monomer, polymer and NTIL, which might cause inspirations to different fields including polymer chemistry, NTIL, AIE and PIE.

3.
Acta Neuropathol Commun ; 7(1): 217, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31870460

RESUMO

Perioperative sleep disturbance is a risk factor for persistent pain after surgery. Clinical studies have shown that patients with insufficient sleep before and after surgery experience more intense and long-lasting postoperative pain. We hypothesize that sleep deprivation alters L-type calcium channels in the dorsal root ganglia (DRG), thus delaying the recovery from post-surgical pain. To verify this hypothesis, and to identify new predictors and therapeutic targets for persistent postoperative pain, we first established a model of postsurgical pain with perioperative sleep deprivation (SD) by administering hind paw plantar incision to sleep deprivation rats. Then we conducted behavioral tests, including tests with von Frey filaments and a laser heat test, to verify sensory pain, measured the expression of L-type calcium channels using western blotting and immunofluorescence of dorsal root ganglia (an important neural target for peripheral nociception), and examined the activity of L-type calcium channels and neuron excitability using electrophysiological measurements. We validated the findings by performing intraperitoneal injections of calcium channel blockers and microinjections of dorsal root ganglion cells with adeno-associated virus. We found that short-term sleep deprivation before and after surgery increased expression and activity of L-type calcium channels in the lumbar dorsal root ganglia, and delayed recovery from postsurgical pain. Blocking these channels reduced impact of sleep deprivation. We conclude that the increased expression and activity of L-type calcium channels is associated with the sleep deprivation-mediated prolongation of postoperative pain. L-type calcium channels are thus a potential target for management of postoperative pain.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiopatologia , Dor Pós-Operatória/metabolismo , Privação do Sono/metabolismo , Animais , Canais de Cálcio Tipo L/genética , Técnicas de Silenciamento de Genes , Masculino , Neurônios/metabolismo , Neurônios/fisiologia , Ratos Sprague-Dawley
4.
J Neurosci ; 35(20): 7950-63, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25995479

RESUMO

Accumulating evidence suggests that activation of spinal microglia contributes to the development of inflammatory and neuropathic pain. However, the role of spinal microglia in the maintenance of chronic pain remains controversial. Bone cancer pain shares features of inflammatory and neuropathic pain, but the temporal activation of microglia and astrocytes in this model is not well defined. Here, we report an unconventional role of spinal microglia in the maintenance of advanced-phase bone cancer pain in a female rat model. Bone cancer elicited delayed and persistent microglial activation in the spinal dorsal horn on days 14 and 21, but not on day 7. In contrast, bone cancer induced rapid and persistent astrocytic activation on days 7-21. Spinal inhibition of microglia by minocycline at 14 d effectively reduced bone cancer-induced allodynia and hyperalgesia. However, pretreatment of minocycline in the first week did not affect the development of cancer pain. Bone cancer increased ATP levels in CSF, and upregulated P2X7 receptor, phosphorylated p38, and IL-18 in spinal microglia. Spinal inhibition of P2X7/p-38/IL-18 pathway reduced advanced-phase bone cancer pain and suppressed hyperactivity of spinal wide dynamic range (WDR) neurons. IL-18 induced allodynia and hyperalgesia after intrathecal injection, elicited mechanical hyperactivity of WDR neurons in vivo, and increased the frequency of mEPSCs in spinal lamina IIo nociceptive synapses in spinal cord slices. Together, our findings demonstrate a novel role of microglia in maintaining advanced phase cancer pain in females via producing the proinflammatory cytokine IL-18 to enhance synaptic transmission of spinal cord nociceptive neurons.


Assuntos
Interleucina-18/metabolismo , Microglia/metabolismo , Neuralgia/fisiopatologia , Células do Corno Posterior/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/líquido cefalorraquidiano , Animais , Neoplasias Ósseas/complicações , Potenciais Pós-Sinápticos Excitadores , Feminino , Interleucina-18/genética , Microglia/fisiologia , Potenciais Pós-Sinápticos em Miniatura , Minociclina/farmacologia , Minociclina/uso terapêutico , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Neuralgia/metabolismo , Células do Corno Posterior/fisiologia , Ratos , Ratos Wistar , Receptores Purinérgicos P2X7/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Mol Brain ; 8: 15, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25761941

RESUMO

BACKGROUND: Systemically administered dexmedetomidine (DEX), a selective α2 adrenergic receptor (α2-AR) agonists, produces analgesia and sedation. Peripherally restricted α2-AR antagonist could block the analgesic effect of systemic DEX on neuropathic pain, with no effect on sedation, indicating peripheral analgesic effect of DEX. Tetrodotoxin-resistant (TTX-R) sodium channel Nav1.8 play important roles in the conduction of nociceptive sensation. Both α2-AR and Nav1.8 are found in small nociceptive DRG neurons. We, therefore, investigated the effects of DEX on the Nav1.8 currents in acutely dissociated small-diameter DRG neurons. RESULTS: Whole-cell patch-clamp recordings demonstrated that DEX concentration-dependently suppressed TTX-R Nav1.8 currents in small-diameter lumbar DRG neurons. DEX also shifted the steady-state inactivation curves of Nav1.8 in a hyperpolarizing direction and increased the threshold of action potential and decrease electrical and chemical stimuli-evoked firings in small-diameter DRG neurons. The α2-AR antagonist yohimbine or α2A-AR antagonist BRL44408 but not α2B-AR antagonist imiloxan blocked the inhibition of Nav1.8 currents by DEX. Immunohistochemistry results showed that Nav1.8 was predominantly expressed in peripherin-positive small-diameter DRG neurons, and some of them were α2A-AR-positive ones. Our electrophysiological recordings also demonstrated that DEX-induced inhibition of Nav1.8 currents was prevented by intracellular application of G-protein inhibitor GDPß-s or Gi/o proteins inhibitor pertussis toxin (PTX), and bath application of adenylate cyclase (AC) activator forskolin or membrane-permeable cAMP analogue 8-Bromo-cAMP (8-Br-cAMP). PKA inhibitor Rp-cAMP could mimic DEX-induced inhibition of Nav1.8 currents. CONCLUSIONS: We established a functional link between α2-AR and Nav1.8 in primary sensory neurons utilizing the Gi/o/AC/cAMP/PKA pathway, which probably mediating peripheral analgesia of DEX.


Assuntos
Dexmedetomidina/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Gânglios Espinais/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Neurônios/metabolismo , Tetrodotoxina/farmacologia , Potenciais de Ação , Animais , Gânglios Espinais/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Ratos Wistar , Receptores Adrenérgicos alfa 2/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
J Neurosci ; 33(49): 19099-111, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24305807

RESUMO

Pain is the most common symptom of bone cancer. TGF-ß, a major bone-derived growth factor, is largely released by osteoclast bone resorption during the progression of bone cancer and contributes to proliferation, angiogenesis, immunosuppression, invasion, and metastasis. Here, we further show that TGF-ß1 is critical for bone cancer-induced pain sensitization. We found that, after the progression of bone cancer, TGF-ß1 was highly expressed in tumor-bearing bone, and the expression of its receptors, TGFßRI and TGFßRII, was significantly increased in the DRG in a rat model of bone cancer pain that is based on intratibia inoculation of Walker 256 mammary gland carcinoma cells. The blockade of TGF-ß receptors by the TGFßRI antagonist SD-208 robustly suppressed bone cancer-induced thermal hyperalgesia on post-tumor day 14 (PTD 14). Peripheral injection of TGF-ß1 directly induced thermal hyperalgesia in intact rats and wide-type mice, but not in Trpv1(-/-) mice. Whole-cell patch-clamp recordings from DRG neurons showed that transient receptor potential vanilloid (TRPV1) sensitivity was significantly enhanced on PTD 14. Extracellular application of TGF-ß1 significantly potentiated TRPV1 currents and increased [Ca(2+)]i in DRG neurons. Pharmacological studies revealed that the TGF-ß1 sensitization of TRPV1 and the induction of thermal hyperalgesia required the TGF-ßR-mediated Smad-independent PKCε and TGF-ß activating kinase 1-p38 pathways. These findings suggest that TGF-ß1 signaling contributes to bone cancer pain via the upregulation and sensitization of TRPV1 in primary sensory neurons and that therapeutic targeting of TGF-ß1 may ameliorate the bone cancer pain in advanced cancer.


Assuntos
Neoplasias Ósseas/complicações , Hiperalgesia/fisiopatologia , Sistema Nervoso Periférico/fisiopatologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta1/fisiologia , Animais , Comportamento Animal/fisiologia , Western Blotting , Carcinoma 256 de Walker/patologia , Fenômenos Eletrofisiológicos , Feminino , Hiperalgesia/etiologia , Imuno-Histoquímica , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/fisiologia , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Proteína Quinase C/fisiologia , Ratos , Ratos Wistar , Proteínas Smad/genética , Proteínas Smad/fisiologia , Canais de Cátion TRPV/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
7.
Neurochem Res ; 35(11): 1780-6, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20717722

RESUMO

Previous studies indicated that disruption of glial function in the spinal cord enhanced electroacupuncture (EA) analgesia in arthritic rats, suggesting glia is involved in processing EA analgesia. To probe into the potential value for clinical practice, the present study was to investigate the effect of propentofylline, a glia inhibitor, on EA analgesia in rats. Mechanical allodynia induced by tetanic stimulation of sciatic nerve (TSS) was used as a pain model. On day 7 after TSS, EA treatment induced a significant increase in paw withdrawal threshold to mechanical stimulation. Intrathecal or intraperitoneal injection of propentofylline relieved TSS-induced mechanical allodynia. The combination of low dosage of propentofylline and EA produced more potent anti-allodynia than propentofylline or EA alone. Immunohistochemistry exhibited that TSS-induced activation of microglia and astrocytes was inhibited significantly by propentofylline. These results indicate that propentofylline and EA induce synergetic analgesia by interrupting spinal glial function.


Assuntos
Analgesia , Eletroacupuntura/métodos , Medula Espinal/fisiopatologia , Xantinas/uso terapêutico , Animais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/terapia , Masculino , Neuroglia/efeitos dos fármacos , Neuroglia/fisiologia , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/fisiopatologia , Medula Espinal/efeitos dos fármacos , Tetania/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...