Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 416: 125935, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492864

RESUMO

Carbonaceous materials (CMs) have been applied extensively for enhancing the catalytic performance of environmental catalysts, however, the self-catalytic mechanism of CMs for groundwater remediation is rarely investigated. Herein, we unveiled the catalytic ability of various CMs via Fe(III) reduction through polyvinyl alcohol-coated calcium peroxide nanoparticles (PVA@nCP) for trichloroethylene (TCE) removal. Among selected CMs (graphite (G), biochar (BC) and activated carbon (AC)), BC and AC showed enhancement of TCE removal of 89% and 98% via both adsorption and catalytic degradation. BET and SEM analyses showed a higher adsorption capacity of AC (27.8%) than others. The generation of solution-Fe(II) and surface-Fe(II) revealed the reduction of Fe(III) on CMs-surface. The role of O-containing groups was investigated by the FTIR technique and XPS quantified the 52% and 57% surface-Fe(II) in BC and AC systems, respectively. EPR and quenching tests confirmed that both solution and surface-bound species (HO•, O2-• and 1O2) contributed to TCE degradation. Acidic pH condition encouraged TCE removal and the presence of HCO3- negatively affected TCE removal than other inorganic ions. Both schemes (PVA@nCP/Fe(III)/BC and PVA@nCP/Fe(III)/AC) exhibited promising results in the actual groundwater, surfactant-amended solution, and removal of other chlorinated-pollutants, opening a new direction towards green environmental remediation for prolonged benefits.


Assuntos
Água Subterrânea , Nanopartículas , Tricloroetileno , Poluentes Químicos da Água , Preparações de Ação Retardada , Compostos Férricos , Oxirredução , Poluentes Químicos da Água/análise
2.
J Hazard Mater ; 420: 126589, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34329106

RESUMO

In this study, amorphous boron was employed as a reductant in traditional Fenton system for the first time to accelerate the regeneration of Fe(II). The degradation of 1,2-dichloroethane (DCA) was only 40.0% in Fenton system, while in the presence of amorphous boron, it could reach to 93.0% in 60 min. HO• was demonstrated to be the major reactive oxygen species (ROSs) and responsible for DCA degradation. Further, the mechanism of amorphous boron-enhanced Fenton system was described as follows. With the addition of amorphous boron, the reduction process occurred on its surface and Fe(III) was regenerated to Fe(II) to further utilize H2O2 and produce more HO• for DCA removal. Meanwhile, amorphous boron was oxidized to B2O3 and a portion of H3BO3 leaching into the solution occurred. Both B2O3 and H3BO3 had no reactivity for Fe(III) reduction. Moreover, DCA could be entirely dechlorinated and mineralized to CO2, Cl- and H2O. Vinyl chloride (VC) and dichloromethane (DCM) were the mainly intermediates in DCA degradation and two possible pathways were inferred. Eventually, the performance of DCA degradation in complex solution matrixes and for other contaminants removal were tested, demonstrating the broad-spectrum reactivity and superiority of amorphous boron-enhanced Fenton system in the remediation of contaminated groundwater.

3.
Sci Total Environ ; 794: 148674, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34214820

RESUMO

A novel catalyst of sulfidated iron-nickel supported on biochar (S-FeNi@BC) was synthesized to activate persulfate (PS) for the removal of trichloroethylene (TCE). A number of techniques including XRD, SEM, TEM, FTIR, BET and EDS were employed to characterize S-FeNi@BC. The influence of sulfur to iron ratio (S/F) on TCE removal was investigated by batch experiments and a higher TCE removal (98.4%) was achieved at 0.22/1 ratio of S/F in the PS/S-FeNi@BC oxidation system. A dominant role in iron species conversion was noticed by the addition of sulfur in FeNi@BC system. Significant enhancement in recycling of the dissolved and surface Fe(II) was confirmed which contributed to the generation of free and surface-bound active radical species (OH, O2-, 1O2, SO4-). Further, the presence and contribution of these radicals were validated by the electron paramagnetic resonance (EPR) and quenching study. In addition, XPS results demonstrated the dominant role of S(-II) with the increase of Fe(II) from 36.3% to 58.6% and decrease of Fe(III) from 52.1% to 39.8% in the PS/S-FeNi@BC system. In crux, the influence of initial pH, catalyst dosage, oxidant dosage, and inorganic ions (HCO3-, Cl-, NO3- and SO42-) on TCE removal was also investigated. The findings obtained from this study suggest that S-FeNi@BC is an appropriate catalyst to activate PS for TCE contaminated groundwater remediation.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Compostos Férricos , Oxirredução , Espécies Reativas de Oxigênio , Tricloroetileno/análise , Poluentes Químicos da Água/análise
4.
Chemosphere ; 281: 130798, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34000655

RESUMO

In this study, the common chlorinated solvent trichloroethene (TCE) was selected as the target contaminant. The aqueous solution after solubilization treatment (containing TCE and sodium dodecyl sulfate (SDS)) was used as the research object to carry out the remediation technology research of citric acid (CA) enhanced Fe(II) activation in sodium percarbonate (SPC) system. In 0.15 mM TCE and 1 critical micelle concentration (CMC) SDS solution, CA chelating Fe(II) activated SPC could effectively promote 93.2% degradation of TCE when the dosages of SPC, Fe(II) and CA were 3.0, 6.0 and 3.0 mM, respectively. SDS had a significant inhibitory effect on the degradation of TCE, and the surface tension changed after the reaction. The addition of CA greatly increased the generation of hydroxyl radicals (HO) in the system, while the removal of TCE was mainly attributed to HO, and the removed TCE was almost completely dechlorinated. The pH range from 3 to 7 could keep the TCE degradation above 80.0%. In the actual groundwater remediation, this technique could also efficiently degrade TCE (including SDS), showing a great application potential and development prospective in practice.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Carbonatos , Ácido Cítrico , Compostos Ferrosos , Oxirredução , Estudos Prospectivos , Dodecilsulfato de Sódio , Poluentes Químicos da Água/análise
5.
Water Sci Technol ; 83(2): 344-357, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33504699

RESUMO

The chlorobenzene (CB) degradation performances by various oxidants, including hydrogen peroxide (H2O2), nanoscale calcium peroxide (nCaO2) and sodium percarbonate (SPC), activated with ferrous iron (Fe(II)) were investigated and thoroughly compared. The results showed that all tested systems had strong abilities to degrade CB. The CB removal rate increased with increasing dosages of oxidants or Fe(II) because the generation of reactive oxygen species could be promoted with the chemical dosages' increase. Response surface and contour plots showed that CB could achieve a better removal performance at the same H2O2 and Fe(II) molar content, but the Fe(II) dosage was higher than that of oxidants in the nCaO2 and SPC systems. The optimal molar ratios of H2O2/Fe(II)/CB, nCaO2/Fe(II)/CB and SPC /Fe(II)/CB were 5.2/7.6/1, 8/8/1, and 4.5/8/1, respectively, in which 98.1%, 98%, and 96.4% CB removals could be obtained in 30 min reaction. The optimal pH condition was around 3, while CB removal rates were less than 20% in all three systems when the initial pH was adjusted to 9. The oxidative hydroxyl radicals (HO•) and singlet oxygen (1O2) had been detected by the electron paramagnetic resonance test. Based upon the results of liquid chromatograph-mass spectrometer analysis, the pathways of CB degradation were proposed, in which 1O2 roles were elaborated innovatively in the CB degradation mechanism. The CB degradation performance was significantly affected in actual groundwater, while increasing the molar ratio of oxidant/Fe(II)/CB was an effective way to overcome the adverse effects caused by the complex of actual groundwater matrix.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Carbonatos , Clorobenzenos , Compostos Ferrosos , Peróxido de Hidrogênio , Ferro , Oxirredução , Peróxidos , Poluentes Químicos da Água/análise
6.
J Hazard Mater ; 407: 124814, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33338809

RESUMO

The mechanism of surfactants in surfactant-in situ chemical oxidation (S-ISCO) coupled process for trichloroethene (TCE) degradation was firstly reported. The performance of TCE solubilization and inhibition of TCE degradation in three nonionic surfactants (TW-80, Brij-35, TX-100) in PS/Fe(II)/citric acid (CA) system was compared and TW-80 was evaluated to be the optimal surfactant in S-ISCO coupled process due to the best TCE solubilizing ability and minimal inhibition for TCE degradation (only 31.8% TCE inhibition in the presence of 1 g L-1 TW-80 surfactant). The inhibition mechanism in TCE degradation was also demonstrated by comparing the strength of ROSs and PS utilization. In the presence of TW-80 (1 g L-1), over 97.5% TCE was removed at the PS/Fe(II)/CA/TCE molar ratio of 30/4/4/1, in which more than 86.7% TCE was dechlorinated. The result of scavenger experiments revealed that the dominant radicals were HO• and SO4-• in PS/Fe(II)/CA system in TW-80 containing aqueous solution, among which SO4-• performed a greater role in TCE removal. Moreover, over 85.3% TCE degradation in actual groundwater revealed the potential of PS/Fe(II)/CA process for actual groundwater remediation in containing TW-80 of TCE contaminant. This research provided a novel alternative technology for groundwater remediation with TCE contaminant when containing surfactants.

7.
Environ Sci Pollut Res Int ; 28(3): 3121-3135, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32902746

RESUMO

In this study, the enhanced trichloroethylene (TCE) degradation performance was investigated by polyvinyl alcohol coated calcium peroxide nanoparticles (PVA@nCP) as an oxidant in Fe(II)-based catalytic systems. The nanoscale iron sulfide (nFeS), having an average particle size of 115.4 nm, was synthesized in the laboratory and characterized by SEM, TEM, HR-TEM along with EDS elemental mapping, XRD, FTIR, ICP-OES, and XPS techniques. In only ferrous iron catalyzed system (PVA@nCP/Fe(II)), TCE degradation was recorded at 58.9% in 6 h. In comparison, this value was increased to 97.5% or 99.7% with the addition of citric acid (CA) or nFeS in PVA@nCP/Fe(II) system, respectively. A comparative study was performed with optimum usages of chemical reagents in both PVA@nCP/Fe(II)/CA and PVA@nCP/Fe(II)/nFeS systems. Further, the probe compounds tests and electron paramagnetic resonance (EPR) analysis confirmed the generation of reactive oxygen species. The scavenging experiments elucidated the dominant role of HO• to TCE degradation, particularly in PVA@nCP/Fe(II)/nFeS system. Both CA and nFeS strengthened PVA@nCP/Fe(II) system, but displayed completely different mechanisms in the enhancement of active radicals generation; hence, their different contribution to TCE degradation. The acidic environment was favorable for TCE degradation, and a high concentration of HCO3- inhibited TCE removal in both systems. Conclusively, compared to PVA@nCP/Fe(II)/nFeS system, PVA@nCP/Fe(II)/CA system resulted in encouraging TCE degradation outcomes in actual groundwater, showing great potential for prolonged benefits in the remediation of TCE polluted groundwater. Graphical abstract.


Assuntos
Água Subterrânea , Nanopartículas , Tricloroetileno , Poluentes Químicos da Água , Catálise , Ácido Cítrico , Compostos Ferrosos , Oxirredução , Peróxidos , Álcool de Polivinil , Poluentes Químicos da Água/análise
8.
Protein Expr Purif ; 175: 105721, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32763465

RESUMO

Lipomax is a commercialized foldase-dependent Pseudomonas lipase that was previously expressed only in Pseudomonas strains. Here, using Pichia pastoris as the host, we report a new co-expression method that leads to the successful production of Lipomax. The active Lipomax is extracellularly co-expressed with its cognate foldase (LIM); and the purified enzyme mix has the optimum pH at pH 8.0 and an optimal temperature around 40 °C. N-glycosylation was observed for Pichia produced Lipomax, and its reduction was shown to increase the lipolytic activity. With different p-nitrophenyl esters as the substrates, the substrate profiling analyses further indicate that Lipomax prefers esters with middle-long chain fatty acids, showing the highest specific activity to p-nitrophenyl caprylate (C8). The extracellular co-expression of Lipomax and LIM in Pichia will not only increase our ability to investigate additional eukaryotic hosts for lipase expression, but also be of considerable value in analyzing other foldase-dependent lipases.


Assuntos
Proteínas de Bactérias , Expressão Gênica , Lipase , Pseudomonas alcaligenes/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Estabilidade Enzimática , Lipase/biossíntese , Lipase/química , Lipase/genética , Lipase/isolamento & purificação , Pseudomonas alcaligenes/enzimologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Saccharomycetales/genética , Saccharomycetales/metabolismo
9.
Small ; 15(13): e1804779, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30828961

RESUMO

An all-carbon pressure sensor is designed and fabricated based on reduced graphene oxide (rGO) nanomaterials. By sandwiching one layer of superelastic rGO aerogel between two freestanding high-conductive rGO thin papers, the sensor works based on the contact resistance at the aerogel-paper interfaces, getting rid of the alien materials such as polymers and metals adopted in traditional sensors. Without the limitation of alien materials, the all-carbon sensors demonstrate an ultrawide detecting range (0.72 Pa-130 kPa), low energy consumption (≈0.58 µW), ultrahigh sensitivity (349-253 kPa-1 ) at low-pressure regime (<1.4 Pa), fast response time (8 ms at 1 kPa), high stability (10 000 unloading-loading cycles between 0 and 1 kPa), light weight (<10 mg), easily scalable fabrication process, and excellent chemical stability. These merits enable them to detect real-time human physiological signals and monitor the weights of various droplets of not only water but also hazardous chemical reagents including strong acid, strong alkali, and organic solvents. This shows their great potential applications in real-time health monitoring, sport performance detecting, harsh environment-related robotics and industry, and so forth.

10.
Appl Catal A Gen ; 531: 177-186, 2017 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29104369

RESUMO

Zeolite supported nano iron-nickel bimetallic composite (Z-nZVI-Ni) was prepared using a liquid-phase reduction process. The corresponding surface morphologies and physico-chemical properties of the Z-nZVI-Ni composite were determined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy dispersive X-ray spectra (EDS), Brunauer Emmett Teller (BET) adsorption, wide angle X-ray diffractometry (WA-XRD), and Fourier transform infrared spectroscopy (FTIR). The results indicated high dispersion of iron and nickel nano particles on the zeolite sheet with an enhanced surface area. Complete destruction of trichloroethene (TCE) and efficient removal of total organic carbon (TOC) were observed by using Z-nZVI-Ni as a heterogeneous catalyst for a Fenton-like oxidation process employing sodium percarbonate (SPC) as an oxidant. The electron spin resonance (ESR) of Z-nZVI-Ni verified the generation and intensity of hydroxyl radicals (OH•). The quantification of OH• elucidated by using p-chlorobenzoic acid, a probe indicator, confirmed the higher intensity of OH•. The transformation products were identified using GC-MS. The slow iron and nickel leaching offered higher stability and better catalytic activity of Z-nZVI-Ni, demonstrating its prospective long term applications in groundwater for TCE degradation.

11.
Chem Eng J ; 325: 188-198, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29104449

RESUMO

The enhancement effect of an environmentally friendly reducing agent, ascorbic acid (AA), on trichloroethene (TCE) degradation by Fe(III)-activated calcium peroxide (CP) was evaluated. The addition of AA accelerated the transformation of Fe(III) to Fe(II), and the complexation of Fe(III)/Fe(II) with AA and its products alleviated the precipitation of dissolved iron. These impacts enhanced the generation of reactive oxygen species (ROSs). Investigation of ROSs using chemical probe tests, electron paramagnetic resonance (EPR) tests, and radical scavenger tests strongly confirm large production of hydroxyl radicals (HO•) that is responsible for TCE degradation. The generation of Cl- from the degraded TCE was complete in the enhanced CP/Fe(III)/AA system. The investigation of solution matrix effects showed that the TCE degradation rate decreases with the increase in solution pH, while Cl-, SO42- and NO3- anions have minor impact. Conversely, HCO3- significantly inhibited TCE degradation due to pH elevation and HO• scavenging. The results of experiments performed using actual groundwater indicated that an increase in reagent doses are required for effective TCE removal. In summary, the potential effectiveness of the CP/Fe(III)/AA oxidation system for remediation of TCE contaminated groundwater has been demonstrated. Additional research is needed to develop the system for practical implementation.

12.
Chem Eng J ; 309: 22-29, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28959136

RESUMO

Complete degradation of benzene by the Fe(III)-activated sodium percarbonate (SPC) system is demonstrated. Removal of benzene at 1.0 mM was seen within 160 min, depending on the molar ratios of SPC to Fe(III). A mechanism of benzene degradation was elaborated by free-radical probe-compound tests, free-radical scavengers tests, electron paramagnetic resonance (EPR) analysis, and determination of Fe(II) and H2O2 concentrations. The degradation products were also identified using gas chromatography-mass spectrometry method. The hydroxyl radical (HO.) was the leading species in charge of benzene degradation. The formation of HO. was strongly dependent on the generation of the organic compound radical (R.) and superoxide anion radical (O.). Benzene degradation products included hydroxylated derivatives of benzene (phenol, hydroquinone, benzoquinone, and catechol) and aliphatic acids (oxalic and fumaric acids). The proposed degradation pathways are consistent with radical formation and identified products. The investigation of selected matrix constituents showed that the Cl and HCO3 had inhibitory effects on benzene degradation. Natural organic matter (NOM) had accelerating influence in degrading benzene. The developed system was tested with groundwater samples and it was found that the Fe(III)-activated SPC has a great potential in effective remediation of benzene-contaminated groundwater while more further studies should be done for its practical application in the future because of the complex subsurface environment.

13.
Nat Commun ; 8: 14886, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28337987

RESUMO

It is a great challenge to substantially improve the practical performance of flexible thermoelectric modules due to the absence of air-stable n-type thermoelectric materials with high-power factor. Here an excellent flexible n-type thermoelectric film is developed, which can be conveniently and rapidly prepared based on the as-grown carbon nanotube continuous networks with high conductivity. The optimum n-type film exhibits ultrahigh power factor of ∼1,500 µW m-1 K-2 and outstanding stability in air without encapsulation. Inspired by the findings, we design and successfully fabricate the compact-configuration flexible TE modules, which own great advantages compared with the conventional π-type configuration modules and well integrate the superior thermoelectric properties of p-type and n-type carbon nanotube films resulting in a markedly high performance. Moreover, the research results are highly scalable and also open opportunities for the large-scale production of flexible thermoelectric modules.

14.
Anal Chem ; 89(3): 1900-1906, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28208293

RESUMO

Construction of convenient systems for isomer discrimination is of great importance for medical and life sciences. Here, we report a simple and effective chiral sensing device based on a highly ordered self-assembly framework. Cu2+-modified ß-cyclodextrin (Cu-ß-CD) was self-assembled to the ammonia-ethanol cotreated chitosan (ae-CS), and the highly ordered framework was gradually formed during the "re-growth" process of the shrinked ae-CS films. Tryptophan (Trp) isomers were well discriminated with the highly ordered framework by electrochemical approach. This study is the first example showing how an ordered structure influences chiral recognition.

15.
J Hazard Mater ; 323(Pt A): 99-108, 2017 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-27017099

RESUMO

Knowledge on the pharmaceuticals and personal care products (PPCPs) in landfill leachates, which are an important source of PPCPs in the environment, was very limited. Hence, four sampling campaigns were conducted to determine eighteen PPCPs in the landfill leachates from a landfill reservoir in Shanghai. Five of the target PPCPs were first included in a landfill leachate study. Additionally, their removal from landfill leachates by a full-scale membrane bioreactor (MBR) was illustrated. The results showed fourteen out of eighteen PPCPs were detectable in at least one sampling campaign and achieved individual concentrations ranging from 0.39 to 349µg/L in the landfill leachates. Some PPCPs exhibited higher contamination levels than those reported in other countries. Good removal of PPCPs by MBR led to a largely reduced contamination level (

Assuntos
Reatores Biológicos , Cosméticos/análise , Preparações Farmacêuticas/análise , Eliminação de Resíduos/métodos , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análise , Biodegradação Ambiental , China , Cidades , Estudos de Viabilidade
16.
Environ Technol ; 38(1): 34-41, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27149929

RESUMO

Controlled-release permanganate (CRP) is a relatively new technology used to treat contaminated groundwater. This study tested the encapsulation of permanganate using stearic acid to realize controlled-release properties. Batch experiments were conducted to investigate the performance of manganese oxides (MnO2) in the reaction between CRP and the contaminant of interest: tetrachloroethylene (PCE). The results showed that higher ionic strengths (I = 0.1 mol/L) cause earlier precipitation of MnO2 colloids. Using CRP to degrade PCE could decrease the amount of MnO2 colloids produced and postpone precipitation compared to raw potassium permanganate (KMnO4) under high ionic strength conditions by controlling the KMnO4 concentration in the solution. The amount of MnO2 colloids produced and the time of precipitation depended more on the CRP grain size than on the CRP mass ratio. Controlling the KMnO4 concentration used in the reaction could control the formation of MnO2 precipitates in the premise of guarantee the removal rate of PCE.


Assuntos
Compostos de Manganês/química , Óxidos/química , Permanganato de Potássio/química , Tetracloroetileno/química , Poluentes Químicos da Água/química , Precipitação Química , Concentração Osmolar , Purificação da Água
17.
Nanoscale ; 8(41): 17881-17886, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27714203

RESUMO

Hybrid hydro-responsive actuators are developed by infiltrating carbon nanotube yarns using poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate). These actuators demonstrate impressive rotation and contraction in response to water due to volumetric expansion of the helical arrangement of carbon nanotubes. The total torsional stroke is 3720 revolutions per m and the simultaneously generated contractive strain reaches 24% at a paddle-to-yarn mass ratio of 350. The contraction output can furthermore be significantly enhanced by constraining the rotational motion and it reaches 68% with an applied stress of 1 MPa. Additionally, hybrid yarns exhibit an approximately linear response to humidity changes and show extra capability of electrical actuation, which, combined with the excellent hydro-actuation performance, endow them with great potential for a variety of applications including artificial muscles, hydro-driven generators, moisture switches and microfluidic mixers.

18.
Chemosphere ; 160: 1-6, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27351899

RESUMO

This study was conducted to assess the application of calcium peroxide (CP) activated with Fe(II) chelated by (S,S)-ethylenediamine-N,N'-disuccinic acid (EDDS) to enhance trichloroethylene (TCE) degradation in aqueous solution. It was indicated that EDDS prevented soluble iron from precipitation, and the optimum molar ratio of Fe(II)/EDDS to accelerate TCE degradation was 1/1. The influences of initial TCE, CP and Fe(II)-EDDS concentration were also investigated. The combination of CP and Fe(II)-EDDS complex rendered the efficient degradation of TCE at near neutral pH range. Chemical probe and scavenger tests identified that TCE degradation mainly owed to the oxidation of HO while O2(-) promoted HO generation. Cl(-), HCO3(-) and humic acid were found to inhibit CP/Fe(II)-EDDS performance on different levels. In conclusion, the application of CP activated with Fe(II)-EDDS complex is a promising technology in chemical remediation of groundwater, while further research in practical implementation is needed.


Assuntos
Etilenodiaminas/química , Compostos Ferrosos/química , Peróxidos/química , Succinatos/química , Tricloroetileno/química , Poluentes Químicos da Água/química , Recuperação e Remediação Ambiental , Água Subterrânea , Substâncias Húmicas , Concentração de Íons de Hidrogênio , Ferro/química , Oxirredução
19.
Small ; 12(25): 3407-14, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27199099

RESUMO

An ingenious strategy is put forward to evaluate accurately the thermoelectric performance of carbon nanotube (CNT) thin films, including thermal conductivity, electrical conductivity, and Seebeck coefficient in the same direction. The results reveal that the as-prepared CNT interconnected films and CNT fibers possess enormous potential of thermoelectric applications because of their ultrahigh power factors.


Assuntos
Nanotecnologia/métodos , Nanotubos de Carbono/química , Condutividade Elétrica , Temperatura
20.
Environ Sci Pollut Res Int ; 23(13): 13298-307, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27023817

RESUMO

Chlorinated organic solvents (COSs) are extensively detected in contaminated soil and groundwater that pose long-term threats to human life and environment. In order to degrade COSs effectively, a novel catalytic composite of natural zeolite-supported nano zero valent iron (Z-nZVI) was synthesized in this study. The performance of Z-nZVI-catalyzed sodium percarbonate (SPC) in a heterogeneous Fenton-like system was investigated for the degradation of COSs such as 1,1,1-trichloroethane (1,1,1-TCA) and trichloroethylene (TCE). The surface characteristics and morphology of the Z-nZVI composite were tested using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Total pore volume, specific surface area, and pore size of the natural zeolite and the Z-nZVI composite were measured using Brunauer-Emmett-Teller (BET) method. SEM and TEM analysis showed significant elimination of aggregation and well dispersion of iron nano particles on the framework of natural zeolite. The BET N2 measurement analysis indicated that the surface area of the Z-nZVI composite was 72.3 m(2)/g, much larger than that of the natural zeolite (0.61 m(2)/g). For the contaminant analysis, the samples were extracted with n-hexane and analyzed through gas chromatograph. The degradation of 1,1,1-TCA and TCE in the Z-nZVI-catalyzed percarbonate system were 48 and 39 % respectively, while strong augmentation was observed up to 83 and 99 %, respectively, by adding the reducing agent (RA), hydroxyl amine (NH2OH•HCl). Probe tests validated the presence of OH(●) and O2 (●-) which were responsible for 1,1,1-TCA and TCE degradation, whereas both free radicals were strengthened with the addition of RA. In conclusion, the Z-nZVI/SPC oxidation with reducing agent shows potential technique for degradation of groundwater contaminated by 1,1,1-TCA and TCE.


Assuntos
Carbonatos/química , Ferro/química , Tricloroetanos/química , Tricloroetileno/química , Poluentes Químicos da Água/química , Zeolitas/química , Recuperação e Remediação Ambiental , Água Subterrânea , Hexanos/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...