Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(1): 87-90, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38019106

RESUMO

A technology for early warning (of over 25 minutes) of thermal runaway in lithium-ion batteries based on common characteristic resistances supported by thermodynamic calculations was derived. With great potential in practical application for avoiding property losses and human casualties, this technology was proven to be efficient and accurate.

2.
Small ; 17(18): e2007312, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33733558

RESUMO

The controllable large-area growth of single-crystal vertical heterostructures based on 2D transition metal dichalcogenides (TMDs) remains a challenge. Here, large-area vertical MoS2 /WS2 heterostructures are synthesized using single-step confined-space chemical vapor epitaxy. The heterostructures can evolve into two different kinds by switching the H2 flow on and off: MoS2 /WS2 heterostructures with multiple WS2 domains can be achieved without introducing the H2 flow due to the numerous nucleation centers on the bottom MoS2 monolayer during the transition stage between the MoS2 and WS2 monolayer growth. In contrast, isolated MoS2 /WS2 heterostructures with single WS2 domain can be obtained with introducing the H2 flow due to the reduced nucleation centers on the bottom MoS2 monolayer arising from the hydrogen etching effect. Both the two kinds of the vertical MoS2 /WS2 heterostructures feature high quality. The photodetectors based on the isolated MoS2 /WS2 heterostructures exhibit a high responsivity of 68 mA W-1 and a short response time of 35 ms. This single-step chemical vapor epitaxy can be used to synthesize vertical MoS2 /WS2 heterostructures with high production efficiency. The new epitaxial growth approach may open new pathways to fabricate large-area heterostructures made of different 2D TMDs monolayers of interest to electronics, optoelectronics, and other applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...