Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 199: 97-112, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36805045

RESUMO

Although traumatic brain injury (TBI) is a common cause of death and disability worldwide, there is currently a lack of effective therapeutic drugs and targets. To reveal the complex pathophysiologic mechanisms of TBI, we performed transcriptome analysis of the mouse cerebral cortex and immunohistochemical analysis of human cerebral tissues. The genes Mt1, Mt2, Il33, and Fth1 were upregulated post-TBI and enriched in pathways associated with the inflammatory response, oxidative phosphorylation, and ferroptosis. As an agonist of MT1/2, melatonin (MLT) confers anti-oxidant, anti-inflammatory, and anti-ferroptosis effects after TBI. However, whether these upregulated genes and their corresponding pathways are involved in the neuroprotective effect of MLT remains unclear. In this study, interventions to inhibit MT1/2, IL-33, and ferroptosis (i.e., ferritin H (Fth)-KO) were applied post-TBI. The results showed that MLT attenuated TBI-induced cerebral edema and neurological outcomes by inhibiting inflammation and ferroptosis. Mechanistically, MLT mainly suppressed inflammatory responses and ferroptosis via the activation of MT2 and IL-33 pathways. Building on the previous finding that Fth deletion increases susceptibility to ferroptosis post-TBI, we demonstrated that Fth depletion remarkably exacerbated the post-TBI inflammatory response, and abolished the anti-inflammatory effects of MLT both in vivo and in vitro. Furthermore, the post-TBI anti-inflammatory effect of MLT, which occurs by promoting the polarization of CD206+ macrophages, was dependent on Fth. Taken together, these results clarified that MLT alleviates inflammation- and ferroptosis-mediated brain edema and neurological deficits by activating the MT2/IL-33/Fth pathway, which provides a novel target and theoretical basis for MLT to treat TBI patients.


Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Melatonina , Animais , Humanos , Camundongos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/complicações , Inflamação/tratamento farmacológico , Inflamação/complicações , Interleucina-33/genética , Melatonina/farmacologia , Doenças Neuroinflamatórias , Ferritinas/metabolismo
2.
Free Radic Biol Med ; 194: 184-198, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493983

RESUMO

Ferroptosis is a form of regulated cell death that is mainly triggered by iron-dependent lipid peroxidation. A growing body of evidence suggests that ferroptosis is involved in the pathophysiology of traumatic brain injury (TBI), and tropomyosin-related kinase B (TrkB) deficiency would mediate TBI pathologies. As an agonist of TrkB and an immediate precursor of melatonin, N-acetyl serotonin (NAS) exerts several beneficial effects on TBI, but there is no information regarding the role of NAS in ferroptosis after TBI. Here, we examined the effect of NAS treatment on TBI-induced functional outcomes and ferroptosis. Remarkably, the administration of NAS alleviated TBI-induced neurobehavioral deficits, lesion volume, and neurodegeneration. NAS also rescued TBI-induced mitochondrial shrinkage, the changes in ferroptosis-related molecule expression, and iron accumulation in the ipsilateral cortex. Similar results were obtained with a well-established ferroptosis inhibitor, liproxstatin-1. Furthermore, NAS activated the TrkB/PI3K/Akt/Nrf2 pathway in the mouse model of TBI, while inhibition of PI3K and Nrf2 weakened the protection of NAS against ferroptosis both in vitro and in vivo, suggesting that a possible pathway linking NAS to the action of anti-ferroptosis was TrkB/PI3K/Akt/Nrf2. Given that ferritin H (Fth) is a known transcription target of Nrf2, we then investigated the effects of NAS on neuron-specific Fth knockout (Fth-KO) mice. Strikingly, Fth deletion almost abolished the protective effects of NAS against TBI-induced ferroptosis and synaptic damage, although Fth deletion-induced susceptibility toward ferroptosis after TBI was reversed by an iron chelator, deferoxamine. Taken together, these data indicate that the TrkB agonist NAS treatment appears to improve brain function after TBI by suppressing ferroptosis, at least in part, through activation of the PI3K/Akt/Nrf2/Fth pathway, providing evidence that NAS is likely to be a promising anti-ferroptosis agent for further treatment for TBI.


Assuntos
Lesões Encefálicas Traumáticas , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Ferritinas , Serotonina , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Ferro/metabolismo
3.
Brain Pathol ; 33(3): e13126, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36271611

RESUMO

Based on accumulating evidence, cholesterol metabolism dysfunction has been suggested to contribute to the pathophysiological process of traumatic brain injury (TBI) and lead to neurological deficits. As a key transporter of cholesterol that efflux from cells, the ATP-binding cassette (ABC) transporter family exerts many beneficial effects on central nervous system (CNS) diseases. However, there is no study regarding the effects and mechanisms of ABCG1 on TBI. As expected, TBI resulted in the different time-course changes of cholesterol metabolism-related molecules in the injured cortex. Considering ABCG1 is expressed in neuron and glia post-TBI, we generated nestin-specific Abcg1 knockout (Abcg1-KO) mice using the Cre/loxP recombination system. These Abcg1-KO mice showed reduced plasma high-density lipoprotein cholesterol levels and increased plasma lower-density lipoprotein cholesterol levels under the base condition. After TBI, these Abcg1-KO mice were susceptible to cholesterol metabolism turbulence. Moreover, Abcg1-KO exacerbated TBI-induced pyroptosis, apoptosis, neuronal cell insult, brain edema, neurological deficits, and brain lesion volume. Importantly, we found that treating with retinoid X receptor (RXR, the upstream molecule of ABCG1) agonist, bexarotene, in Abcg1-KO mice partly rescued TBI-induced neuronal damages mentioned above and improved functional deficits versus vehicle-treated group. These data show that, in addition to regulating brain cholesterol metabolism, Abcg1 improves neurological deficits through inhibiting pyroptosis, apoptosis, neuronal cell insult, and brain edema. Moreover, our findings demonstrate that the cerebroprotection of Abcg1 on TBI partly relies on the activation of the RXRalpha/PPARgamma pathway, which provides a potential therapeutic target for treating TBI.


Assuntos
Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Lesões Encefálicas Traumáticas , Colesterol , Animais , Camundongos , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Encéfalo/metabolismo , Edema Encefálico , Colesterol/metabolismo , Camundongos Knockout , Piroptose
4.
Oxid Med Cell Longev ; 2022: 1274550, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36062196

RESUMO

Traumatic brain injury (TBI) is a serious health issue with a high incidence, high morbidity, and high mortality that poses a large burden on society. Further understanding of the pathophysiology and cell death models induced by TBI may support targeted therapies for TBI patients. Ferroptosis, a model of programmed cell death first defined in 2012, is characterized by iron dyshomeostasis, lipid peroxidation, and glutathione (GSH) depletion. Ferroptosis is distinct from apoptosis, autophagy, pyroptosis, and necroptosis and has been shown to play a role in secondary brain injury and worsen long-term outcomes after TBI. This review systematically describes (1) the regulatory pathways of ferroptosis after TBI, (2) the neurobiological links between ferroptosis and other cell death models, and (3) potential therapies targeting ferroptosis for TBI patients.


Assuntos
Lesões Encefálicas Traumáticas , Ferroptose , Apoptose , Morte Celular , Humanos , Peroxidação de Lipídeos
5.
Arch Insect Biochem Physiol ; 107(4): e21827, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34173258

RESUMO

Silkworm (Bombyx mori) is an important economic insect and an attractive model system. A series of autophagy-related genes (Atgs) are involved in the autophagic process, and these Atgs have been proved to play important roles in the development. Atg7 stands at the hub of two ubiquitin-like systems involving Atg8 and Atg12 in the autophagic vesicle. In the present study, we cloned and characterized a BmAtg7 gene in Bombyx mori. The open reading frame (ORF) of BmAtg7 was 1908 bp in length, and it encoded a polypeptide of 635 amino acids. BmAtg7 was highly expressed in the posterior silk gland, fatbody, and epidermis. The expression profile of BmAtg7 in the fatbody showed an increasing tendency from day 1 of the 5th instar to the prepupal stage. After chlorantraniliprole (CAP) exposure, the transcriptional level of BmAtg7 was continuously decreased. After depletion of BmAtg7 by RNAi, the expressions of BmAtg7, BmAtg8, and BmEcr were all downregulated, while the expression of BmJHBP2 was upregulated. However, depletion of BmAtg7 did not prevent the metamorphosis of silkworm from larvae to pupae, while the occurrence of such process was delayed. After the 20-hydroxyecdysone (20E) treatment, the expression characteristics of these four genes (BmAtg7, BmAtg8, BmEcr and BmJHBP2) were contrary to the results after depletion of BmAtg7. Our results suggested that although CAP exposure could significantly inhibit the expression of BmAtg7 continuously, the changes of BmAtg7 was not the key factor in CAP-induced metamorphosis defects.


Assuntos
Proteína 7 Relacionada à Autofagia/genética , Bombyx/genética , Sequência de Aminoácidos , Animais , Proteína 7 Relacionada à Autofagia/metabolismo , Bombyx/metabolismo , Clonagem Molecular , Ecdisterona , ortoaminobenzoatos
6.
J Pineal Res ; 70(2): e12704, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33206394

RESUMO

Accumulating evidence demonstrates that ferroptosis may be important in the pathophysiological process of traumatic brain injury (TBI). As a major hormone of the pineal gland, melatonin exerts many beneficial effects on TBI, but there is no information regarding the effects of melatonin on ferroptosis after TBI. As expected, TBI resulted in the time-course changes of ferroptosis-related molecules expression and iron accumulation in the ipsilateral cortex. Importantly, we found that treating with melatonin potently rescued TBI induced the changes mentioned above and improved functional deficits versus vehicle. Similar results were obtained with a ferroptosis inhibitor, liproxstatin-1. Moreover, the protective effect of melatonin is likely dependent on melatonin receptor 1B (MT2). Although ferritin plays a vital role in iron metabolism by storing excess cellular iron, its precise function in the brain, and whether it involves melatonin's neuroprotection remain unexplored. Considering ferritin H (Fth) is expressed predominantly in the neurons and global loss of Fth in mice induces early embryonic lethality, we then generated neuron-specific Fth conditional knockout (Fth-KO) mice, which are viable and fertile but have altered iron metabolism. In addition, Fth-KO mice were more susceptible to ferroptosis after TBI, and the neuroprotection by melatonin was largely abolished in Fth-KO mice. In vitro siFth experiments further confirmed the results mentioned above. Taken together, these data indicate that melatonin produces cerebroprotection, at least partly by inhibiting neuronal Fth-mediated ferroptosis following TBI, supporting the notion that melatonin is an excellent ferroptosis inhibitor and its anti-ferroptosis provides a potential therapeutic target for treating TBI.


Assuntos
Apoferritinas/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Melatonina/uso terapêutico , Animais , Apoferritinas/genética , Western Blotting , Ferroptose/efeitos dos fármacos , Imuno-Histoquímica , Ferro/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real
7.
Pestic Biochem Physiol ; 167: 104593, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32527421

RESUMO

Silkworm (Bombyx mori) is an economically important insect. However, the survival of silkworms has been significantly affected by the assault of chemical pesticides on mulberry trees through aerial application and water currents. Phoxim is a broad-spectrum organophosphorus insecticide widely used in China. Currently, very little is known about the non-neuronal effects of sublethal exposure to phoxim. The purpose of this study was to investigate the non-neuronal effects of sublethal phoxim exposure in the silkworm midgut, with a focus on nutrient metabolism. After phoxim treatment, lipase activity in the silkworm was shown to be up-regulated at 24 h before a decreasing trend was seen. Meanwhile, α-amylase activity showed the opposite trend. The expression levels of mitochondrial respiratory chain-related genes were all up-regulated at 24 h before falling continuously. To ensure that the effects of phoxim on nutrient metabolism were not simply a consequence of a decrease in mulberry consumption, the silkworms were treated with a reduced-food diet before the digestive enzyme activities and the transcription levels of mitochondrial respiratory chain-related genes were analyzed. Our results showed that the patterns in the reduced-diet and phoxim-exposed silkworm were markedly different, suggesting the alterations in the phoxim-exposed silkworm cannot readily be explained by nutrient deprivation.


Assuntos
Bombyx , Comportamento Alimentar , Animais , China , Proteínas de Insetos , Nutrientes , Compostos Organotiofosforados
8.
Ecotoxicol Environ Saf ; 189: 110011, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31796255

RESUMO

Organophosphate pesticides are widely applied worldwide for agricultural purposes, and their exposures often result in adverse effects on Bombyx mori. The insect gut is a complicated ecosystem inhabited by a large number of microbes that play important roles in insect physiology and behavior. Recent studies have reported that alteration of their microbiota due to stressful conditions or environmental changes has been linked to a compromised health status and a susceptibility to diseases. In the present study, we aimed to assess the effects of phoxim exposure on intestinal microbes in silkworms. The results showed that phoxim exposure increased the bacterial community evenness and altered the structure of gut microbiota in silkworm larvae. The abundances of several genera, such as Methylobacterium and Aurantimonadaceae, in phoxim-treated larval guts were significantly reduced compared with the H2O-treated group, whereas the abundances of non-dominant bacteria, such as Staphylococcus, were significantly increased. Moreover, phoxim inhibited the expressions of antimicrobial peptides (AMPs) at the mRNA level and enhanced the pathogenesis of Enterobacter cloacae (E. cloacae) against silkworm larvae, suggesting that the immune system was inhibited after phoxim exposure. Therefore, the gut microbial community shifts were apparent after phoxim exposure. The compositional and structural changes of intestinal microbes caused by phoxim exposure might affect the normal function of the intestinal tract of silkworm. These results highlighted the importance of the gut bacterial community when investigating the mechanisms of midgut injury after pesticide exposure in Bombyx mori.


Assuntos
Bombyx/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Inseticidas/toxicidade , Compostos Organotiofosforados/toxicidade , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Bombyx/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Proteínas de Insetos/genética , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Larva/efeitos dos fármacos , Larva/microbiologia
9.
Biochem Biophys Res Commun ; 514(4): 1045-1050, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31097226

RESUMO

Global warming is known to affect the growth, development and reproduction of insects. In this study, the larvae developmental process and endogenous hormone levels under high temperature (36 °C) stress were investigated in the lepidopteran model insect Bombyx mori (B. mori). After high temperature treatment, the duration of 5th instar larvae was shortened by 28 ±â€¯2 h, the content of 20-hydroxyecdysone(20E) in hemolymph was significantly increased, and the transcription levels of the 20E response genes E93, Br-C, USP and E75 were up-regulated by 1.35-, 1.25-, 1.28-, and 1.27-fold, respectively. High temperature treatment also elevated the phosphorylation level of Akt and activated the downstream BmCncC/keap1 pathway, and the transcription levels of the 20E synthesis-related genes cyp302a1, cyp306a1, cyp314a1 and cyp315a1 were up-regulated by 1.12-, 1.51-, 2.17- and 1.23-fold, respectively. The transcription levels of cyp302a1 and cyp306a1 were significantly decreased in BmN cells after treatment with the double stranded RNA of BmCncC (dsBmCncC), whereas their transcription levels were significantly increased (2.15- and 1.31-fold, respectively) after treatment with the CncC agonist Curcumin. These results demonstrated that high temperature treatment promoted the metamorphosis and the BmCncC/keap1 pathway played a role in the metamorphosis of B. mori. Our results provided clues for understanding the CncC/keap1 pathway-mediated regulation of metamorphosis of Lepidopteran insects.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Metamorfose Biológica , Proteínas Repressoras/metabolismo , Temperatura , Animais , Bombyx , Células Cultivadas , Sistema Enzimático do Citocromo P-450/metabolismo
10.
Forensic Sci Int ; 287: 1-11, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29625302

RESUMO

Lucilia illustris (Meigen, 1826) (Diptera: Calliphoridae) is a cosmopolitan species of fly that has forensic and medical significance. However, there is no relevant study regarding the determination of the age of this species during the intrapuparial period. In this study, we investigated the changes in both morphology and differential gene expression during intrapuparial development, with an aim to estimate the age of L. illustris during the intrapuparial stage. The overall intrapuparial morphological changes of L. illustris were divided into 12 substages. Structures such as the compound eyes, mouthparts, antennae, thorax, legs, wings, and abdomen, each capable of indicating age during the intrapuparial stage, were observed in detail, and the developmental progression of each of these structures was divided into six to eight stages. We recorded the time range over which each substage or structure appeared. The differential expression of the three genes 15_2, actin, and tbp previously identified for predicting the timing of intrapuparial development was measured during L. illustris metamorphosis. The expression of these genes was quantified by real-time PCR, and the results revealed that these genes can be used to estimate the age of L. illustris during the intrapuparial period, as they exhibit regular changes and temperature dependence. This study provides an important basis for estimating the minimum postmortem interval (PMImin) in forensic entomology according to changes in intrapuparial development and differential gene expression. Furthermore, combination of the two approaches can generate a more precise PMImin than either approach alone.


Assuntos
Dípteros/crescimento & desenvolvimento , Dípteros/genética , Expressão Gênica , Pupa/crescimento & desenvolvimento , Actinas/genética , Animais , Proteínas de Drosophila/genética , Entomologia , Comportamento Alimentar , Ciências Forenses , Mudanças Depois da Morte , Reação em Cadeia da Polimerase em Tempo Real , Proteína de Ligação a TATA-Box/genética
11.
Int J Biochem Cell Biol ; 94: 44-55, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29174311

RESUMO

Dynamin-related protein 1 (Drp1) is a key regulator of mitochondrial fission. Our previous studies proved that the inhibition of Drp1 may help attenuate traumatic brain injury (TBI)-induced functional outcome and cell death through maintaining normal mitochondrial morphology and inhibiting activation of apoptosis. However, the molecular mechanisms of Drp1 after TBI remain poorly understood. In this study, we investigated the role of mitochondrial division inhibitor 1 (Mdivi-1), a small molecule inhibitor of Drp1, in underlying mechanisms of general autophagy and mitochondria autophagy (mitophagy) after experimental TBI. In vivo, we found that autophagosomes accumulated in cortical neurons at 24h after TBI, owing to the enhanced autophagy indicated by the accumulation of LC3 and the decrease of p62; but Mdivi-1 reversed the enhancement. Mdivi-1 also alleviated the number of LC3 puncta and TUNEL-positive structures in cells, indicating that autophagy maybe involved in Mdivi-1's anti-apoptosis effects. Then, the expression level of mitochondrial dynamics related and mitophagy related proteins was assessed using the isolated mitochondria. The results showed that TBI-induced mitochondrial fission (represented by Drp1), mtDNA concentration down-regulation and PTEN induced putative kinase 1 (PINK1)-Parkin mediated mitophagy activation were all inhibited by Mdivi-1. In addition, TBI-induced blood-brain barrier (BBB) disruption and matrix metalloproteinases (MMP)-9 expression up-regulation were inhibited following Mdivi-1 treatment. In vitro, Mdivi-1 significantly alleviated the scratch injury-induced cell death, loss of mitochondrial membrane potential, reactive oxygen species (ROS) production and ATP reduction in primary cortical neurons (PCNs). Additionally, the lysosome inhibitor chloroquine (CQ) abrogated the Mdivi-1-induced decrease in autophagosomes accumulation and cell death at 24h both in the basal state and under the conditions of scratch cell injury. Together, these data demonstrate that Mdivi-1 mitigates TBI-induced BBB disruption and cell death at least in part by a mechanism involving inhibiting autophagy dysfunction and mitophagy activation.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Modelos Animais de Doenças , Dinaminas/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico , Moduladores de Transporte de Membrana/uso terapêutico , Mitofagia/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagossomos/patologia , Autofagia/efeitos dos fármacos , Biomarcadores/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/fisiopatologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Dinaminas/metabolismo , Embrião de Mamíferos/citologia , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Moduladores de Transporte de Membrana/farmacologia , Camundongos Endogâmicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico , Distribuição Aleatória
12.
Pest Manag Sci ; 73(3): 554-561, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27220913

RESUMO

BACKGROUND: Silkworm (Bombyx mori) is an economically important insect. It is relatively less resistant to certain chemicals and environment exposures such as pesticides and pathogens. After pesticide exposures, the silkworms are more susceptible to microbial infections. The mechanism underlying the susceptibility might be related to immune response and oxidative stress. RESULTS: A sublethal dose of phoxim combined with Bombyx mori nucleopolyhedrovirus (BmNPV) elevated the silkworm mortality at 96 h. We found a higher content of H2 O2 and increased levels of genes related to oxidative stress and immune response after treatment with a sublethal dose of phoxim for 24 h or 48 h. However, such response decreased with longer pesticide treatment. Mortality increased by 44% when B. mori was exposed to combined treatment with BmNPV and phoxim rather than BmNPV alone. The level of examined immune-related and oxidative-stress-related genes significantly decreased in the combined treatment group compared with the BmNPV group. Our results indicated that, with long-term exposure to pesticides such as OPs, even at sublethal dose, the oxidative stress response and immune responses in silkworm were inhibited, which may lead to further immune impairment and accumulation of oxidative stress, resulting in susceptibility to the virus and harm to the silkworm. CONCLUSION: Our study provided insights for understanding the susceptibility to pathogen after pesticide exposures, which may promote the development of better pesticide controls to avoid significant economic losses. © 2016 Society of Chemical Industry.


Assuntos
Bombyx/virologia , Inseticidas/toxicidade , Nucleopoliedrovírus/fisiologia , Compostos Organotiofosforados/toxicidade , Animais , Bombyx/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/imunologia , Larva/virologia , Estresse Oxidativo
13.
Environ Toxicol ; 32(1): 167-175, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26608777

RESUMO

Organophosphate pesticides are applied widely in the world for agricultural purposes, and their exposures often resulted in non-cocooning of Bombyx mori in China. Silkworm midgut is the major organ for digestion and nutrient absorption, importantly it is also a barrier against foreign substances and chemical pesticides. The purpose of this study was to determine the mechanism of oxidative injury in silkworm midgut with phoxim induction. The results showed that the transcription level of oxidative phosphorylation signaling pathway genes of midgut under phoxim stress. Digital gene expression (DGE) analysis revealed that 24 electron transport chain (ETC)-related genes were upregulated. Quantitative real time polymerase chain reaction results indicated that the ETC the genes encoding NADH-CoQ1, Succinic-Q, cyt c reductase-S, cyt c oxidase-S, cytochrome c oxidase polypeptide IV, ATP synthase, and vacuolar H+ ATP synthase were all significantly up-regulated by 1.50-, 1.31-, 1.42-, 1.44-, 1.70-, 2.03- and 1.43-fold, respectively. Phoxim induction enhanced the activity of ETC complex in mitochondria, and induced the accumulation of ROS in midgut. These results indicated that trace phoxim enhanced respiration in midgut, and the imbalance between the activity changes of ETC may led to reactive oxygen species accumulation. The ETC of mitochondria may be potential biomarkers of midgut toxicity in B. mori caused by phoxim exposure. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 167-175, 2017.


Assuntos
Bombyx/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Inseticidas/toxicidade , Compostos Organotiofosforados/toxicidade , Fosforilação Oxidativa/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Biomarcadores , Trato Gastrointestinal/enzimologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Crescimento/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Estresse Oxidativo/efeitos dos fármacos
14.
Arch Insect Biochem Physiol ; 91(1): 3-16, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26472595

RESUMO

Silkworm is an important economic insect and the model species for Lepidoptera. The midgut of silkworm is an important physiological barrier, as its peritrophic membrane (PM) can resist pathogen invasion. In this study, a silkworm midgut cDNA library was constructed in order to identify silkworm PM genes. The capacity of the initial library was 6.92 × 10(6) pfu/ml, along with a recombination rate of 92.14% and a postamplification titer of 4.10 × 10(9) pfu/ml. Three silkworm PM protein genes were obtained by immunoscreening, two of which were chitin-binding protein (CBP) genes and one of which was a chitin deacetylase (CDA) gene as revealed by sequence analysis. Three genes were named BmCBP02, BmCBP13, and BmCDA17, and their ORF sizes are 678, 1,029, and 645 bp, respectively; all of them contain sequences of chitin-binding domains. Phylogenetic analysis indicated that BmCBP02 has the highest consensus with Mamestra configurata CBP at 61.0%; BmCBP13 has the highest consensus with Loxostege sticticalis PM CBP at 53.35%; BmCDA17 has the highest consensus with Helicoverpa armigera CDA5a at 70.83%. Tissue transcriptional analysis revealed that all three genes were specifically expressed in the midgut, and during the developmental process of fifth-instar silkworms, the transcription of all the genes showed an upward trend. This study laid a foundation for further studies on the functions of silkworm PM genes.


Assuntos
Amidoidrolases/genética , Bombyx/genética , Biblioteca Gênica , Proteínas de Insetos/genética , Amidoidrolases/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Bombyx/crescimento & desenvolvimento , Bombyx/metabolismo , DNA Complementar/genética , Trato Gastrointestinal/metabolismo , Proteínas de Insetos/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
J Chem Ecol ; 40(8): 913-22, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25139758

RESUMO

Silkworm (Bombyx mori), a model Lepidoptera insect, is economically important. Its growth and development are regulated by endogenous hormones. During the process of transition from larvae to pupae, 20-hydroxyecdysone (20E) plays an important role. The recent surge in consumer products and applications using metallic nanoparticles has increased the possibility of human or ecosystem exposure due to their unintentional release into the environment. We investigated the effects of exposure to titanium dioxide nanoparticles (TiO2 NPs) on the action of 20E in B. mori. Titanium dioxide nanoparticle treatment shortened the molting duration by 8 hr and prolonged the molting peak period by 10 %. Solexa sequencing profiled the changes in gene expression in the brain of fifth-instar B. mori in response to TiO2NPS exposure for 72 hr, to address the effects on hormone metabolism and regulation. Thirty one genes were differentially expressed. The transcriptional levels of pi3k and P70S6K, which are involved in the target of the rapamycin (TOR) signaling pathway, were up-regulated. Transcriptional levels of four cytochrome P450 genes, which are involved in 20E biosynthesis, at different developmental stages (48, 96, 144, and 192 hr) at 5th instars of all displayed trends of increasing expression. Simultaneously, the ecdysterone receptors, also displayed increasing trends. The 20E titers at four developmental stages during the 5th instar were 1.26, 1.23, 1.72, and 2.16 fold higher, respectively, than the control group. These results indicate that feeding B. mori with TiO2 NPs stimulates 20E biosynthesis, shortens the developmental progression, and reduces the duration of molting. Thus, application of TiO2 NPs is of high significance for saving the labor force in sericulture, and our research provides a reference for the ecological problems in the field of Lepidoptera exposured to titanium dioxide nanoparticles.


Assuntos
Bombyx/efeitos dos fármacos , Bombyx/fisiologia , Ecdisterona/metabolismo , Nanopartículas Metálicas/toxicidade , Transdução de Sinais , Titânio/toxicidade , Agricultura , Animais , Bombyx/crescimento & desenvolvimento , Ecdisterona/biossíntese , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/fisiologia , Seda
16.
Mol Biol Rep ; 41(1): 429-37, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24323194

RESUMO

The acetylcholinesterase of Lepidoptera insects is encoded by two genes, ace1 and ace2. The expression of the ace1 gene is significantly higher than that of the ace2 gene, and mutations in ace1 are one of the major reasons for pesticide resistance in insects. In order to investigate the effects of the mutations in ace1's characteristic sites on pesticide resistance, we generated mutations for three amino acids using site-directed mutagenesis, which were Ala(GCG)303Ser(TCG), Gly(GGA)329Ala(GCA) and Leu (TCT)554Ser(TTC). The Baculovirus expression system was used for the eukaryotic expression of the wild type ace1 (wace1) and the mutant ace1 (mace1). SDS-PAGE and Western blotting were used to detect the targeting proteins with expected sizeof about 76 kDa. The expression products were purified for the determination of AChE activity and the inhibitory effects of physostigmine and phoxim. We observed no significant differences in the overall activity of the wild type and mutant AChEs. However, with 10 min of physostigmine (10 µM) inhibition, the remaining activity of the wild type AChE was significantly lower than that of the mutant AChE. Ten min inhibition with 33.4 µM phoxim also resulted in significantly lower remaining activity of the wild type AChE than that of the mutant AChE. These results indicated that mutations for the three amino acids reduced the sensitivity of AChE to physostigmine and phoxim, which laid the foundation for future in vivo studies on AChE's roles in pesticide resistance.


Assuntos
Acetilcolinesterase/genética , Bombyx/enzimologia , Inibidores da Colinesterase/química , Proteínas de Insetos/genética , Inseticidas/química , Acetilcolinesterase/química , Animais , Sequência de Bases , Proteínas de Insetos/química , Resistência a Inseticidas , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Compostos Organotiofosforados/química , Fisostigmina/química , Células Sf9 , Spodoptera
17.
Chemosphere ; 96: 33-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23899924

RESUMO

The silkworm is an important economic insect. Poisoning of silkworms by organophosphate pesticides causes tremendous loss to the sericulture. In this study, Solexa sequencing technology was performed to profile the gene expression changes in the midgut of silkworms in response to 24h of phoxim exposure and the impact on detoxification, apoptosis and immune defense were addressed. The results showed that 254 genes displayed at least 2.0-fold changes in expression levels, with 148 genes up-regulated and 106 genes down-regulated. Cytochrome P450 played an important role in detoxification. Histopathology examination and transmission electron microscope revealed swollen mitochondria and disappearance of the cristae of mitochondria, which are the important features in insect apoptotic cells. Cytochrome C release from mitochondria into the cytoplasm was confirmed. In addition, the Toll and immune deficiency (IMD) signal pathways were all inhibited using qRT-PCR. Our results could help better understand the impact of phoxim exposure on silkworm.


Assuntos
Bombyx/efeitos dos fármacos , Inseticidas/toxicidade , Compostos Organotiofosforados/toxicidade , Animais , Bombyx/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Digestório/efeitos dos fármacos , Sistema Digestório/metabolismo , Expressão Gênica , Inativação Metabólica/genética , Inseticidas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...