Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm X ; 5: 100172, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36861067

RESUMO

In this study, we designed aptamer-based self-assemblies for the delivery of quinine. Two different architectures were designed by hybridizing quinine binding aptamers and aptamers targeting Plasmodium falciparum lactate dehydrogenase (PfLDH): nanotrains and nanoflowers. Nanotrains consisted in controlled assembly of quinine binding aptamers through base-pairing linkers. Nanoflowers were larger assemblies obtained by Rolling Cycle Amplification of a quinine binding aptamer template. Self-assembly was confirmed by PAGE, AFM and cryoSEM. The nanotrains preserved their affinity for quinine and exhibited a higher drug selectivity than nanoflowers. Both demonstrated serum stability, hemocompatibility, low cytotoxicity or caspase activity but nanotrains were better tolerated than nanoflowers in the presence of quinine. Flanked with locomotive aptamers, the nanotrains maintained their targeting ability to the protein PfLDH as analyzed by EMSA and SPR experiments. To summarize, nanoflowers were large assemblies with high drug loading ability, but their gelating and aggregating properties prevent from precise characterization and impaired the cell viability in the presence of quinine. On the other hand, nanotrains were assembled in a selective way. They retain their affinity and specificity for the drug quinine, and their safety profile as well as their targeting ability hold promise for their use as drug delivery systems.

2.
Langmuir ; 39(8): 3072-3082, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36793207

RESUMO

It has been shown that the use of conformationally pH-switchable lipids can drastically enhance the cytosolic drug delivery of lipid vesicles. Understanding the process by which the pH-switchable lipids disturb the lipid assembly of nanoparticles and trigger the cargo release is crucial to optimize the rational design of pH-switchable lipids. Here, we gather morphological observations (FF-SEM, Cryo-TEM, AFM, confocal microscopy), physicochemical characterization (DLS, ELS), as well as phase behavior studies (DSC, 2H NMR, Langmuir isotherm, and MAS NMR) to propose a mechanism of pH-triggered membrane destabilization. We demonstrate that the switchable lipids are homogeneously incorporated with other co-lipids (DSPC, cholesterol, and DSPE-PEG2000) and promote a liquid-ordered phase insensitive to temperature variation. Upon acidification, the protonation of the switchable lipids triggers a conformational switch altering the self-assembly properties of lipid nanoparticles. These modifications do not lead to a phase separation of the lipid membrane; however, they cause fluctuations and local defects, which result in morphological changes of the lipid vesicles. These changes are proposed to affect the permeability of vesicle membrane, triggering the release of the cargo encapsulated in the lipid vesicles (LVs). Our results confirm that pH-triggered release does not require major morphological changes, but can result from small defects affecting the lipid membrane permeability.


Assuntos
Sistemas de Liberação de Medicamentos , Lipídeos , Lipídeos/química , Fenômenos Químicos , Conformação Molecular , Permeabilidade
4.
Int J Pharm ; 632: 122552, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36587777

RESUMO

This article has been withdrawn: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been withdrawn at the request of the author, editor and publisher. The publisher regrets that an error occurred during the publication of this paper, which was intended to be published in International Journal of Pharmaceutics: X (not International Journal of Pharmaceutics). This error bears no reflection on the scientific content of this article or its authors. The publisher apologizes to the readers for this unfortunate error.

5.
Nucleic Acids Res ; 50(21): 12328-12343, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36453997

RESUMO

G-quadruplexes (G4s) are four-stranded nucleic acid structures formed by the stacking of G-tetrads. Here we investigated their formation and function during HIV-1 infection. Using bioinformatics and biophysics analyses we first searched for evolutionary conserved G4-forming sequences in HIV-1 genome. We identified 10 G4s with conservation rates higher than those of HIV-1 regulatory sequences such as RRE and TAR. We then used porphyrin-based G4-binders to probe the formation of the G4s during infection of human cells by native HIV-1. The G4-binders efficiently inhibited HIV-1 infectivity, which is attributed to the formation of G4 structures during HIV-1 replication. Using a qRT-PCR approach, we showed that the formation of viral G4s occurs during the first 2 h post-infection and their stabilization by the G4-binders prevents initiation of reverse transcription. We also used a G4-RNA pull-down approach, based on a G4-specific biotinylated probe, to allow the direct detection and identification of viral G4-RNA in infected cells. Most of the detected G4-RNAs contain crucial regulatory elements such as the PPT and cPPT sequences as well as the U3 region. Hence, these G4s would function in the early stages of infection when the viral RNA genome is being processed for the reverse transcription step.


Assuntos
Quadruplex G , HIV-1 , Humanos , RNA/química , HIV-1/genética , Sequências Reguladoras de Ácido Nucleico , Sequência Conservada
6.
Eur J Med Chem ; 232: 114183, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35168151

RESUMO

Glycosyl conjugation to drugs is a strategy being used to take advantage of glucose transporters (GLUT) overexpression in cancer cells in comparison with non-cancerous cells. Its extension to the conjugation of drugs to thiosugars tries to exploit their higher biostability when compared to O-glycosides. Here, we have synthesized a series of thiosugar naphthalene diimide conjugates as G-quadruplex ligands and have explored modifications of the amino sidechain comparing dimethyl amino and morpholino groups. Then, we studied their antiproliferative activity in colon cancer cells, and their antiparasitic activity in T. brucei and L. major parasites, together with their ability to bind quadruplexes and their cellular uptake and location. We observed higher toxicity for the sugar-NDI-NMe2 derivatives than for the sugar-NDI-morph compounds, both in mammalian cells and in parasites. Our experiments indicate that a less efficient binding to quadruplexes and a worse cellular uptake of the carb-NDI-morph derivatives could be the reasons for these differences. We found small variations in cytotoxicity between O-carb-NDIs and S-carb-NDIs, except against non-cancerous human fibroblasts MRC-5, where thiosugar-NDIs tend to be less toxic. This leads to a notable selectivity for ß-thiomaltosyl-NDI-NMe212 (9.8 fold), with an IC50 of 0.3 µM against HT-29 cells. Finally, the antiparasitic activity observed for the carb-NDI-NMe2 derivatives against T. brucei was in the nanomolar range with a good selectivity index in the range of 30- to 69- fold.


Assuntos
Quadruplex G , Tioaçúcares , Animais , Antiparasitários/farmacologia , Humanos , Imidas/química , Imidas/farmacologia , Ligantes , Naftalenos
7.
Nucleic Acids Res ; 49(16): 9548-9559, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34379785

RESUMO

Genomic sequences susceptible to form G-quadruplexes (G4s) are always flanked by other nucleotides, but G4 formation in vitro is generally studied with short synthetic DNA or RNA oligonucleotides, for which bases adjacent to the G4 core are often omitted. Herein, we systematically studied the effects of flanking nucleotides on structural polymorphism of 371 different oligodeoxynucleotides that adopt intramolecular G4 structures. We found out that the addition of nucleotides favors the formation of a parallel fold, defined as the 'flanking effect' in this work. This 'flanking effect' was more pronounced when nucleotides were added at the 5'-end, and depended on loop arrangement. NMR experiments and molecular dynamics simulations revealed that flanking sequences at the 5'-end abolish a strong syn-specific hydrogen bond commonly found in non-parallel conformations, thus favoring a parallel topology. These analyses pave a new way for more accurate prediction of DNA G4 folding in a physiological context.


Assuntos
Quadruplex G , Nucleotídeos/genética , Oligonucleotídeos/genética , Polimorfismo Genético/genética , Dicroísmo Circular , DNA/genética , DNA/ultraestrutura , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Nucleotídeos/química , Oligonucleotídeos/química , RNA/genética , RNA/ultraestrutura
8.
Biochimie ; 190: 124-131, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34329720

RESUMO

Paraspeckles are RNA-protein structures within the nucleus of mammalian cells, capable of orchestrating various biochemical processes. An overexpression of the architectural component of paraspeckles, a long non-coding RNA called NEAT1 (Nuclear Enriched Abundant Transcript 1), has been linked to a variety of cancers and is often associated with poor patient prognosis. Thus, there is an accumulating interest in the role of paraspeckles in carcinogenesis, however there is a limited understanding of how NEAT1 expression is regulated. Here, we demonstrate that both nuclear G-quadruplex (G4) and paraspeckle formation are significantly increased in a human breast cancer cell line compared to non-tumorigenic breast cells. Moreover, we identified and characterized G4-forming sequences within the NEAT1 promoter and demonstrate stabilization of G4 DNA with a G4-stabilizing small molecule results in a significant alteration in both paraspeckle formation and NEAT1 expression. This G4-mediated alteration of NEAT1 at both the transcriptional and post-transcriptional levels was evident in U2OS osteosarcoma cells, MCF-7 breast adenocarcinoma and MDA-MB-231 triple negative breast cancer cells.


Assuntos
Quadruplex G , Neoplasias/genética , Neoplasias/metabolismo , Paraspeckles/genética , Paraspeckles/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Humanos , RNA Longo não Codificante/química , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
9.
Angew Chem Int Ed Engl ; 60(18): 10286-10294, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33605024

RESUMO

Recent studies indicate that i-DNA, a four-stranded cytosine-rich DNA also known as the i-motif, is actually formed in vivo; however, a systematic study on sequence effects on stability has been missing. Herein, an unprecedented number of different sequences (271) bearing four runs of 3-6 cytosines with different spacer lengths has been tested. While i-DNA stability is nearly independent on total spacer length, the central spacer plays a special role on stability. Stability also depends on the length of the C-tracts at both acidic and neutral pHs. This study provides a global picture on i-DNA stability thanks to the large size of the introduced data set; it reveals unexpected features and allows to conclude that determinants of i-DNA stability do not mirror those of G-quadruplexes. Our results illustrate the structural roles of loops and C-tracts on i-DNA stability, confirm its formation in cells, and allow establishing rules to predict its stability.

10.
Org Biomol Chem ; 18(29): 5617-5624, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32648871

RESUMO

The first conceptualised class of dual-binding guanine quadruplex binders has been designed, synthesised and biophysically studied. These compounds combine diaromatic guanidinium systems and neutral tetra-phenylporphyrins (classical binding moiety for guanine quadruplexes) by means of a semi-rigid linker. An extensive screening of a variety of guanine quadruplex structures and double stranded DNA via UV-vis, FRET and CD experiments revealed the preference of the conjugates towards guanine quadruplexes. Additionally, docking studies indicate the potential dual mode of binding.


Assuntos
DNA/química , Guanidinas/química , Porfirinas/química , Sítios de Ligação , Quadruplex G , Simulação de Acoplamento Molecular , Estrutura Molecular
12.
J Enzyme Inhib Med Chem ; 35(1): 432-459, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31899980

RESUMO

A series of new 2,4-bis[(substituted-aminomethyl)phenyl]quinoline, 1,3-bis[(substituted-aminomethyl)phenyl]isoquinoline, and 2,4-bis[(substituted-aminomethyl)phenyl]quinazoline derivatives was designed, synthesised, and evaluated in vitro against three protozoan parasites (Plasmodium falciparum, Leishmania donovani, and Trypanosoma brucei brucei). Biological results showed antiprotozoal activity with IC50 values in the µM range. In addition, the in vitro cytotoxicity of these original molecules was assessed with human HepG2 cells. The quinoline 1c was identified as the most potent antimalarial candidate with a ratio of cytotoxic to antiparasitic activities of 97 against the P. falciparum CQ-sensitive strain 3D7. The quinazoline 3h was also identified as the most potent trypanosomal candidate with a selectivity index (SI) of 43 on T. brucei brucei strain. Moreover, as the telomeres of the parasites P. falciparum and Trypanosoma are possible targets of this kind of nitrogen heterocyclic compounds, we have also investigated stabilisation of the Plasmodium and Trypanosoma telomeric G-quadruplexes by our best compounds through FRET melting assays.


Assuntos
Antiprotozoários/química , Antiprotozoários/farmacologia , Desenho de Fármacos , Quinolinas/química , Quinolinas/farmacologia , Antiprotozoários/síntese química , Células Hep G2 , Humanos , Leishmania donovani/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/síntese química , Relação Estrutura-Atividade , Trypanosoma brucei brucei/efeitos dos fármacos
13.
FEBS Lett ; 593(22): 3149-3161, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31677274

RESUMO

Scar formation after wound healing is a major medical problem. A better understanding of the dynamic nuclear architecture of the genome during wound healing could provide insights into the underlying pathophysiology and enable novel therapeutic strategies. Here, we demonstrate that TGF-ß-induced fibrotic stress increases formation of the dynamic secondary DNA structures called G-quadruplexes in skin fibroblasts, which is coincident with increased expression of collagen 1. This G-quadruplex formation is attenuated by a small molecule inhibitor of intracellular Ca2+ influx and an anti-fibrotic compound. In addition, we identify G-quadruplex-forming sequences in the promoter region of COL1A1, which encodes collagen 1, and confirm their ability to form G-quadruplex structures under physiologically relevant conditions. Our findings reveal a link between G-quadruplexes and scar formation that may lead to novel therapeutic interventions.


Assuntos
Colágeno Tipo I/química , Colágeno Tipo I/genética , Fibroblastos/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Cálcio/metabolismo , Células Cultivadas , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibrose , Quadruplex G , Humanos , Regiões Promotoras Genéticas , Sítio de Iniciação de Transcrição , Regulação para Cima , Cicatrização
14.
Nat Commun ; 10(1): 3274, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332171

RESUMO

Genome-wide studies of DNA replication origins revealed that origins preferentially associate with an Origin G-rich Repeated Element (OGRE), potentially forming G-quadruplexes (G4). Here, we functionally address their requirements for DNA replication initiation in a series of independent approaches. Deletion of the OGRE/G4 sequence strongly decreased the corresponding origin activity. Conversely, the insertion of an OGRE/G4 element created a new replication origin. This element also promoted replication of episomal EBV vectors lacking the viral origin, but not if the OGRE/G4 sequence was deleted. A potent G4 ligand, PhenDC3, stabilized G4s but did not alter the global origin activity. However, a set of new, G4-associated origins was created, whereas suppressed origins were largely G4-free. In vitro Xenopus laevis replication systems showed that OGRE/G4 sequences are involved in the activation of DNA replication, but not in the pre-replication complex formation. Altogether, these results converge to the functional importance of OGRE/G4 elements in DNA replication initiation.


Assuntos
Replicação do DNA/genética , Quadruplex G , Mamíferos/genética , Origem de Replicação/genética , Animais , Células Cultivadas , Vetores Genéticos/genética , Humanos , Camundongos , Mutação , Células NIH 3T3 , Oócitos/metabolismo , Plasmídeos/genética , Xenopus laevis
15.
Nucleic Acids Res ; 47(9): 4363-4374, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30923812

RESUMO

G-quadruplexes (G4) are non-canonical DNA and/or RNA secondary structures formed in guanine-rich regions. Given their over-representation in specific regions in the genome such as promoters and telomeres, they are likely to play important roles in key processes such as transcription, replication or RNA maturation. Putative G4-forming sequences (G4FS) have been reported in humans, yeast, bacteria, viruses and many organisms. Here we present the first mapping of G-quadruplex sequences in Dictyostelium discoideum, the social amoeba. 'Dicty' is an ameboid protozoan with a small (34 Mb) and extremely AT rich genome (78%). As a consequence, very few G4-prone motifs are expected. An in silico analysis of the Dictyostelium genome with the G4Hunter software detected 249-1055 G4-prone motifs, depending on G4Hunter chosen threshold. Interestingly, despite an even lower GC content (as compared to the whole Dicty genome), the density of G4 motifs in Dictyostelium promoters and introns is significantly higher than in the rest of the genome. Fourteen selected sequences located in important genes were characterized by a combination of biophysical and biochemical techniques. Our data show that these sequences form highly stable G4 structures under physiological conditions. Five Dictyostelium genes containing G4-prone motifs in their promoters were studied for the effect of a new G4-binding porphyrin derivative on their expression. Our results demonstrated that the new ligand significantly decreased their expression. Overall, our results constitute the first step to adopt Dictyostelium discoideum as a 'G4-poor' model for studies on G-quadruplexes.


Assuntos
Dictyostelium/genética , Quadruplex G , Porfirinas/genética , Regiões Promotoras Genéticas , Simulação por Computador , Genoma/genética , Conformação de Ácido Nucleico , Telômero/genética
16.
Nucleic Acids Res ; 47(6): 2739-2756, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30759257

RESUMO

G-quadruplex ligands exert their antiproliferative effects through telomere-dependent and telomere-independent mechanisms, but the inter-relationships among autophagy, cell growth arrest and cell death induced by these ligands remain largely unexplored. Here, we demonstrate that the G-quadruplex ligand 20A causes growth arrest of cancer cells in culture and in a HeLa cell xenografted mouse model. This response is associated with the induction of senescence and apoptosis. Transcriptomic analysis of 20A treated cells reveals a significant functional enrichment of biological pathways related to growth arrest, DNA damage response and the lysosomal pathway. 20A elicits global DNA damage but not telomeric damage and activates the ATM and autophagy pathways. Loss of ATM following 20A treatment inhibits both autophagy and senescence and sensitizes cells to death. Moreover, disruption of autophagy by deletion of two essential autophagy genes ATG5 and ATG7 leads to failure of CHK1 activation by 20A and subsequently increased cell death. Our results, therefore, identify the activation of ATM by 20A as a critical player in the balance between senescence and apoptosis and autophagy as one of the key mediators of such regulation. Thus, targeting the ATM/autophagy pathway might be a promising strategy to achieve the maximal anticancer effect of this compound.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia , Autofagia/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Quadruplex G , Neoplasias/patologia , Células A549 , Animais , Apoptose/genética , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Autofagia/genética , Linhagem Celular Tumoral , Senescência Celular/genética , Dano ao DNA/efeitos dos fármacos , Células HeLa , Humanos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Neoplasias/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Chem Commun (Camb) ; 54(69): 9647-9650, 2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30101241

RESUMO

Herein we report a new class of G-quadruplex stabilising ligands, multicarbazoles, which display high G-quadruplex DNA selectivity in the presence of 250 times excess duplex DNA. We report the synthesis of these compounds in moderate to high yields. Ligands in the series with optimal G-quadruplex selectivity contain an N-propylamino chain length where the amino functionalities are either pyrrolidine or piperidine.

18.
Nucleic Acids Res ; 46(19): e115, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29986058

RESUMO

Guanine-rich nucleic acid sequences can fold into four-stranded G-quadruplex (G4) structures. Despite growing evidence for their biological significance, considerable work still needs to be done to detail their cellular occurrence and functions. Herein, we describe an optimized core-extended naphthalene diimide (cex-NDI) to be exploited as a G4 light-up sensor. The sensing mechanism relies on the shift of the aggregate-monomer equilibrium towards the bright monomeric state upon G4 binding. In contrast with the majority of other ligands, this novel cex-NDI is able to discriminate among G4s with different topologies, with a remarkable fluorescent response for the parallel ones. We investigate this sensing by means of biophysical methods, comparing the lead compound to a non-selective analogue. We demonstrate that mitigating the affinity of the binding core for G4s results in an increased selectivity and sensitivity of the fluorescent response. This is achieved by replacing positively charged substituents with diethylene glycol (DEG) side chains. Remarkably, the limit of detection values obtained for parallel G4s are more than one order of magnitude lower than those of the parallel-selective ligand N-methyl mesoporphyrin IX (NMM). Interestingly, the classical fluorescent intercalator displacement (FID) assay failed to reveal binding of cex-NDI to G4 because of the presence a ternary complex (G4-TO-cex-NDI) revealed by electrospray-MS. Our study thus provides a rational basis to design or modify existent scaffolds to redirect the binding preference of G4 ligands.


Assuntos
Quadruplex G , Imidas/química , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/farmacologia , Ligantes , Naftalenos/química , Sítios de Ligação , Técnicas Biossensoriais/métodos , Relação Dose-Resposta a Droga , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Quadruplex G/efeitos dos fármacos , Imidas/síntese química , Imidas/farmacologia , Substâncias Intercalantes/química , Naftalenos/síntese química , Naftalenos/farmacologia , Solubilidade , Relação Estrutura-Atividade , Especificidade por Substrato , Água/química
19.
Chemistry ; 24(44): 11292-11296, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-29797628

RESUMO

A new fluorescent, non-cytotoxic perylene diimide derivative with two biotins at the peri position, PDI2B, has been synthesized. This molecule is able to interact selectively with G-quadruplexes with scarce or no affinity towards single- or double-stranded DNA. These features have made it possible to design a simple, effective, safe, cheap, and selective method for fishing G-quadruplex structures in solution by use of PDI2B and streptavidin coated magnetic beads. The new cyclic method reported leads to the recovery of more than 80 % of G-quadruplex structures from solution, even in the presence of an excess of single-stranded or duplex DNA as competitors. Moreover, PDI2B is a G4 ligand that can display higher thermal stabilization and greater affinity for 2- over 3-tetrad quadruplexes, which constitutes a novel type of behavior.


Assuntos
Biotina/química , DNA/química , Corantes Fluorescentes/química , Quadruplex G , Imidas/síntese química , Perileno/análogos & derivados , DNA de Cadeia Simples/química , Ligantes , Imãs , Perilipina-1/química , Perileno/síntese química , Soluções , Estreptavidina/química , Propriedades de Superfície
20.
Nucleic Acids Res ; 46(10): 5297-5307, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718337

RESUMO

Guanine-rich DNA has the potential to fold into non-canonical G-quadruplex (G4) structures. Analysis of the genome of the social amoeba Dictyostelium discoideum indicates a low number of sequences with G4-forming potential (249-1055). Therefore, D. discoideum is a perfect model organism to investigate the relationship between the presence of G4s and their biological functions. As a first step in this investigation, we crystallized the dGGGGGAGGGGTACAGGGGTACAGGGG sequence from the putative promoter region of two divergent genes in D. discoideum. According to the crystal structure, this sequence folds into a four-quartet intramolecular antiparallel G4 with two lateral and one diagonal loops. The G-quadruplex core is further stabilized by a G-C Watson-Crick base pair and a A-T-A triad and displays high thermal stability (Tm > 90°C at 100 mM KCl). Biophysical characterization of the native sequence and loop mutants suggests that the DNA adopts the same structure in solution and in crystalline form, and that loop interactions are important for the G4 stability but not for its folding. Four-tetrad G4 structures are sparse. Thus, our work advances understanding of the structural diversity of G-quadruplexes and yields coordinates for in silico drug screening programs and G4 predictive tools.


Assuntos
Dictyostelium/genética , Quadruplex G , Conformação de Ácido Nucleico , Dicroísmo Circular , Cristalografia por Raios X , Genoma , Modelos Moleculares , Mutação , Ressonância Magnética Nuclear Biomolecular , Regiões Promotoras Genéticas , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...