Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(11): 116201, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37774305

RESUMO

The recent detection of the singular diamagnetism of Dirac electrons in a single graphene layer paved a new way of probing 2D quantum materials through the measurement of equilibrium orbital currents which cannot be accessed in usual transport experiments. Among the theoretical predictions is an intriguing orbital paramagnetism at saddle points of the dispersion relation. Here we present magnetization measurements in graphene monolayers aligned on hexagonal boron nitride crystals. Besides the sharp diamagnetic McClure response at the Dirac point, we detect extra diamagnetic singularities at the satellite Dirac points of the moiré lattice. Surrounding these diamagnetic satellite peaks, we also observe paramagnetic peaks located at the chemical potential of the saddle points of the graphene moiré band structure and relate them to the presence of van Hove logarithmic singularities in the density of states. These findings reveal the long ago predicted anomalous paramagnetic orbital response in 2D systems when the Fermi energy is tuned to the vicinity of saddle points.

2.
Science ; 374(6573): 1399-1402, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34882473

RESUMO

The electronic properties of graphene have been intensively investigated over the past decade. However, the singular orbital magnetism of undoped graphene, a fundamental signature of the characteristic Berry phase of graphene's electronic wave functions, has been challenging to measure in a single flake. Using a highly sensitive giant magnetoresistance (GMR) sensor, we have measured the gate voltage­dependent magnetization of a single graphene monolayer encapsulated between boron nitride crystals. The signal exhibits a diamagnetic peak at the Dirac point whose magnetic field and temperature dependences agree with long-standing theoretical predictions. Our measurements offer a means to monitor Berry phase singularities and explore correlated states generated by the combined effects of Coulomb interactions, strain, or moiré potentials.

3.
Phys Rev Lett ; 125(26): 266801, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449709

RESUMO

We demonstrate the enhanced robustness of the supercurrent through graphene-based Josephson junctions in which strong spin-orbit interactions (SOIs) are induced. We compare the persistence of a supercurrent at high out-of-plane magnetic fields between Josephson junctions with graphene on hexagonal boron-nitride and graphene on WS_{2}, where strong SOIs are induced via the proximity effect. We find that in the shortest junctions both systems display signatures of induced superconductivity, characterized by a suppressed differential resistance at a low current, in magnetic fields up to 1 T. In longer junctions, however, only graphene on WS_{2} exhibits induced superconductivity features in such high magnetic fields, and they even persist up to 7 T. We argue that these robust superconducting signatures arise from quasiballistic edge states stabilized by the strong SOIs induced in graphene by WS_{2}.

4.
Phys Rev Lett ; 122(7): 076802, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30848609

RESUMO

Demonstrating the topological protection of Andreev states in Josephson junctions is an experimental challenge. In particular the telltale 4π periodicity expected for the current phase relation has remained elusive, because of fast parity breaking processes. It was predicted that low temperature ac susceptibility measurements could reveal the topological protection of quantum spin Hall edge states by probing their low energy Andreev spectrum at finite frequency. We have performed such a microwave probing of a phase-biased Josephson junction built around a bismuth nanowire, a predicted second order topological insulator, and which was previously shown to host one-dimensional ballistic edge states. We find absorption peaks at the Andreev level crossings, whose temperature and frequency dependencies point to protected topological crossings with an accuracy limited by the electronic temperature of our experiment.

5.
Phys Rev Lett ; 120(10): 106802, 2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29570325

RESUMO

We demonstrate strong anisotropic spin-orbit interaction (SOI) in graphene induced by monolayer WS_{2}. Direct comparison between graphene-monolayer WS_{2} and graphene-bulk WS_{2} systems in magnetotransport measurements reveals that monolayer transition metal dichalcogenide can induce much stronger SOI than bulk. Detailed theoretical analysis of the weak antilocalization curves gives an estimated spin-orbit energy (E_{so}) higher than 10 meV. The symmetry of the induced SOI is also discussed, and the dominant z→-z symmetric SOI can only explain the experimental results. Spin relaxation by the Elliot-Yafet mechanism and anomalous resistance increase with temperature close to the Dirac point indicates Kane-Mele SOI induced in graphene.

6.
Phys Rev Lett ; 110(21): 217001, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23745912

RESUMO

A mesoscopic hybrid normal-metal-superconductor ring is characterized by a dense Andreev spectrum with a flux dependent minigap. To probe the dynamics of such a ring, we measure its linear response to a high frequency flux, in a wide frequency range, with a multimode superconducting resonator. We find that the current response contains, besides the well-known dissipationless Josephson contribution, a large dissipative component. At high frequency compared to the minigap and low temperature, we find that the dissipation is due to transitions across the minigap. In contrast, at lower frequency there is a range of temperature for which dissipation is caused predominantly by the relaxation of the Andreev states' population. This dissipative response, related via the fluctuation dissipation theorem to a nonintuitive zero frequency thermal noise of supercurrent, is characterized by a phase dependence dominated by its second harmonic, as predicted long ago but never observed thus far.

7.
Sci Rep ; 1: 3, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22355522

RESUMO

The supercurrent that establishes between two superconductors connected through a normal N mesoscopic link is carried by quasiparticule states localized within the link, the "Andreev bound states (ABS)". Whereas the dc properties of this supercurrent in SNS junctions are now well understood, its dynamical properties are still an unresolved issue. In this letter we probe this dynamics by inductively coupling an NS ring to a multimode superconducting resonator, thereby implementing both a phase bias and current detection at high frequency. Whereas at very low temperatures we essentially measure the phase derivative of the supercurrent, at higher temperature we find a surprisingly strong frequency dependence in the current response of the ring: the ABS do not follow adiabatically the phase modulation. This experiment also illustrates a new tool to probe the fundamental time scales of phase coherent systems that are decoupled from macroscopic normal contacts and thermal baths.


Assuntos
Condutividade Elétrica , Metais/química , Modelos Teóricos , Simulação por Computador
8.
Phys Rev Lett ; 104(18): 186802, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20482196

RESUMO

We investigate conductance fluctuations as a function of carrier density n and magnetic field in diffusive mesoscopic samples made from monolayer and bilayer graphene. We show that the fluctuations' correlation energy and field, which are functions of the diffusion coefficient, have fundamentally different variations with n, illustrating the contrast between massive and massless carriers. The field dependent fluctuations are nearly independent of n, but the n-dependent fluctuations are not universal and are largest at the charge neutrality point. We also measure the second-order conductance fluctuations (mesoscopic rectification). Its field asymmetry, due to electron-electron interaction, decays with conductance, as predicted for diffusive systems.

9.
Phys Rev Lett ; 104(12): 126801, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20366555

RESUMO

Transport and elastic scattering times, tau{tr} and tau{e}, are experimentally determined from the carrier density dependence of the magnetoconductance of monolayer and bilayer graphene. Both times and their dependences on carrier density are found to be very different in the monolayer and the bilayer. However, their ratio tau{tr}/tau{e} is found to be close to 1.8 in the two systems and nearly independent of the carrier density. These measurements give insight on the nature (neutral or charged) and range of the scatterers. Comparison with theoretical predictions suggests that the main scattering mechanism in our samples is due to strong (resonant) scatterers of a range shorter than the Fermi wavelength, likely candidates being vacancies, voids, adatoms or short-range ripples.

10.
Phys Rev Lett ; 100(14): 146802, 2008 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-18518062

RESUMO

We investigate weak localization in metallic networks etched in a two-dimensional electron gas between 25 and 750 mK when electron-electron (e-e) interaction is the dominant phase breaking mechanism. We show that, at the highest temperatures, the contributions arising from trajectories that wind around the rings and trajectories that do not are governed by two different length scales. This is achieved by analyzing separately the envelope and the oscillating part of the magnetoconductance. For T > or approximately 0.3 K we find L phi env proportional T(-1/3) for the envelope and L phi osc proportional, T(-1/2) for the oscillations, in agreement with the prediction for a single ring [T. Ludwig and A. D. Mirlin, Phys. Rev. B 69, 193306 (2004); 10.1103/PhysRevB.69.193306C. Texier and G. Montambaux, Phys. Rev. B 72, 115327 (2005); 10.1103/PhysRevB.72.115327C. Texier, Phys. Rev. B76, 153312 (2007)10.1103/PhysRevB.76.153312]. This is the first experimental confirmation of the geometry dependence of decoherence due to e-e interaction.

11.
Phys Rev Lett ; 93(24): 246804, 2004 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-15697847

RESUMO

The low temperature magnetoconductance of a large array of quantum coherent loops exhibits Altshuler-Aronov-Spivak oscillations with a periodicity corresponding to 1/2 flux quantum per loop. We show that the measurement of the harmonics content provides an accurate way to determine the electron phase-coherence length L(phi) in units of the lattice length with no adjustable parameters. We use this method to determine L(phi) in a square network realized from a 2D electron gas in a GaAs/GaAlAs heterojunction, with only a few conducting channels. The temperature dependence follows a power law T(-1/3) from 1.3 K to 25 mK with no saturation, as expected for 1D diffusive electronic motion and electron-electron scattering as the main decoherence mechanism.

12.
Phys Rev Lett ; 87(22): 226801, 2001 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-11736415

RESUMO

We present detailed measurements of the discrete electron-tunneling level spectrum within nanometer-scale cobalt particles as a function of magnetic field and gate voltage, in this way probing individual quantum many-body eigenstates inside ferromagnetic samples. Variations among the observed levels indicate that different quantum states within one particle are subject to different magnetic anisotropy energies. Gate-voltage studies demonstrate that the low-energy tunneling spectrum is affected dramatically by the presence of nonequilibrium spin excitations.

13.
Proc Biol Sci ; 268(1467): 599-607, 2001 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-11297177

RESUMO

Here we present, to our knowledge, the first modelling platform that enables simulations of three-dimensional (3D) motion of multicilia arrays at a detailed level. It consists of three building blocks: (i) geometric equations for tracking the 3D motion of the cilia, (ii) a hydrodynamic description of the ciliary system, and (iii) model equations for the internal bend generating based on the 9 + 2 structure. The model generates seemingly realistic 3D beat patterns and demonstrates metachronal coordination that evolves autonomously as a result of the hydrodynamic coupling between the cilia. We study the effect of the twisting motion within the cilia and propose a conjecture on a possible role of the radial spokes system.


Assuntos
Cílios/fisiologia , Dineínas/química , Dineínas/fisiologia , Modelos Biológicos , Cílios/ultraestrutura , Cinética , Matemática , Modelos Estruturais , Movimento
14.
Phys Rev Lett ; 86(11): 2416-9, 2001 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-11289943

RESUMO

We report measurements on ropes of single-walled carbon nanotubes (SWNT) in low-resistance contact to nonsuperconducting (normal) metallic pads, at low voltage and at temperatures down to 70 mK. In one sample, we find a 2 orders of magnitude resistance drop below 0.55 K, which is destroyed by a magnetic field of the order of 1 T, or by a dc current greater than 2.5 microA. These features strongly suggest the existence of superconductivity in ropes of SWNT.

15.
Science ; 291(5502): 280-2, 2001 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-11209072

RESUMO

Conductivity measurements on double-stranded DNA molecules deposited by a combing process across a submicron slit between rhenium/carbon metallic contacts reveal conduction to be ohmic between room temperature and 1 kelvin. The resistance per molecule is less than 100 kilohm and varies weakly with temperature. Below the superconducting transition temperature (1 kelvin) of the contacts, proximity-induced superconductivity is observed. These results imply that DNA molecules can be conducting down to millikelvin temperature and that phase coherence is maintained over several hundred nanometers.


Assuntos
DNA/química , Condutividade Elétrica , Impedância Elétrica , Eletroquímica , Eletrodos , Microscopia de Força Atômica , Temperatura
16.
Proc Natl Acad Sci U S A ; 96(22): 12240-5, 1999 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-10535905

RESUMO

The internal mechanism of cilia is among the most ancient biological motors on an evolutionary scale. It produces beat patterns that consist of two phases: during the effective stroke, the cilium moves approximately as a straight rod, and during the recovery stroke, it rolls close to the surface in a tangential motion. It is commonly agreed that these two phases are designed for efficient functioning: the effective stroke encounters strong viscous resistance and generates thrust, whereas the recovery stroke returns the cilium to starting position while avoiding viscous resistance. Metachronal coordination between cilia, which occurs when many of them beat close to each other, is believed to be an autonomous result of the hydrodynamical interactions in the system. Qualitatively, metachronism is perceived as a way for reducing the energy expenditure required for beating. This paper presents a quantitative study of the energy expenditure of beating cilia, and of the energetic significance of metachronism. We develop a method for computing the work done by model cilia that beat in a viscous fluid. We demonstrate that for a single cilium, beating in water, the mechanical work done during the effective stroke is approximately five times the amount of work done during the recovery stroke. Investigation of multicilia configurations shows that having neighboring cilia beat metachronally is energetically advantageous and perhaps even crucial for multiciliary functioning. Finally, the model is used to approximate the number of dynein arm attachments that are likely to occur during the effective and recovery strokes of a beat cycle, predicting that almost all of the available dynein arms should participate in generating the motion.


Assuntos
Cílios/fisiologia , Cílios/metabolismo , Dineínas/fisiologia , Metabolismo Energético , Matemática , Modelos Biológicos
17.
Biophys J ; 74(4): 1658-76, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9545031

RESUMO

This paper presents a simple and reasonable method for generating a phenomenological model of the internal mechanism of cilia. The model uses a relatively small number of parameters whose values can be obtained by fitting to ciliary beat shapes. Here, we use beat patterns observed in Paramecium. The forces that generate these beats are computed and fit to a simple functional form called the "engine." This engine is incorporated into a recently developed hydrodynamic model that accounts for interactions between neighboring cilia and between the cilia and the surface from which they emerge. The model results are compared to data on ciliary beat patterns of Paramecium obtained under conditions where the beats are two-dimensional. Many essential features of the motion, including several properties that are not built in explicitly, are shown to be captured. In particular, the model displays a realistic change in beat pattern and frequency in response to increased viscosity and to the presence of neighboring cilia in configurations such as rows of cilia and two-dimensional arrays of cilia. We found that when two adjacent model cilia start beating at different phases they become synchronized within several beat periods, as observed in experiments where two flagella are brought into close proximity. Furthermore, examination of various multiciliary configurations shows that an approximately antiplectic wave pattern evolves autonomously. This modeling evidence supports earlier conjectures that metachronism may occur, at least partially, as a self-organized phenomenon due to hydrodynamic interactions between neighboring cilia.


Assuntos
Cílios/fisiologia , Modelos Biológicos , Animais , Fenômenos Biofísicos , Biofísica , Dineínas/fisiologia , Matemática , Movimento/fisiologia , Paramecium/fisiologia , Viscosidade
18.
Proc Natl Acad Sci U S A ; 94(12): 6001-6, 1997 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-9177158

RESUMO

We present a simple but realistic model for the internal bend-generating mechanism of cilia, using parameters obtained from the analysis of data of the beat of a single cilium, and incorporate it into a recently developed dynamical model. Comparing the results to experimental data for two-dimensional beats, we demonstrate that the model captures the essential features of the motion, including many properties that are not built in explicitly. The beat pattern and frequency change in response to increased viscosity and the presence of neighboring cilia in a realistic fashion. Using the model, we are able to investigate multicilia configurations such as rows of cilia and two-dimensional arrays of cilia. When two adjacent model cilia start beating at different phase, they synchronize within two cycles, as observed in experiments in which two flagella beating out of phase are brought close together. Examination of various multicilia configurations shows that metachronal patterns (i. e., beats with a constant phase difference between neighboring cilia) evolve autonomously. This provides modeling evidence in support of the conjecture that metachronism may occur as a self-organized phenomenon due to hydrodynamical interactions between the cilia.


Assuntos
Cílios/fisiologia , Modelos Teóricos , Modelos Biológicos , Viscosidade
19.
Phys Rev Lett ; 77(14): 3025-3028, 1996 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-10062112
20.
J Neurophysiol ; 74(4): 1404-20, 1995 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8989381

RESUMO

1. The lateral pyloric (LP) neuron is a component of the 14-neuron pyloric central pattern generator in the stomatogastric ganglion of the spiny lobster, Panulirus interruptus. In the pyloric rhythm, this neuron fires rhythmic bursts of action potentials whose phasing depends on the pattern of synaptic inhibition from other network neurons and on the intrinsic postinhibitory rebound properties of the LP cell itself. Bath-applied dopamine excites the LP cell and causes its activity to be phase advanced in the pyloric motor pattern. At least part of this modulatory effect is due to dopaminergic modulation of the intrinsic rate of postinhibitory rebound in the LP cell. 2. The LP neuron was isolated from all detectable synaptic input. We measured the rate of recovery after 1-s hyperpolarizing current injections of varying amplitudes, quantifying the latency to the first spike following the hyperpolarizing prepulse and the interval between the first and second action potentials. Dopamine reduced both the first spike latency and the first interspike interval (ISI) in the isolated LP neuron. During the hyperpolarizating pre-steps, the LP cell showed a slow depolarizing sag voltage that was enhanced by dopamine. 3. We used voltage clamp to analyze dopamine modulation of subthreshold ionic currents whose activity is affected by hyperpolarizing prepulses. Dopamine modulated the transient potassium current IA by reducing its maximal conductance and shifting its voltage dependence for activation and inactivation to more depolarized voltages. This outward current is normally transiently activated after hyperpolarization of the LP cell, and delays the rate of postinhibitory rebound; by reducing IA, dopamine thus accelerates the rate of rebound of the LP neuron. 4. Dopamine also modulated the hyperpolarization-activated inward current Ih by shifting its voltage dependence for activation 20 mV in the depolarizing direction and accelerating its rate of activation. This enhanced inward current helps accelerate the rate of rebound in the LP cell after inhibition. 5. The relative roles of Ih and IA in determining the first spike latency and first ISI were explored using pharmacological blockers of Ih (Cs+) and IA [4-aminopyridine (4-AP)]. Blockade of Ih prolonged the first spike latency and first ISI, but only slightly reduced the net effect of dopamine. In the continued presence of Cs+, blockade of IA with 4-AP greatly shortened the first spike latency and first ISI. Under conditions where both Ih and IA were blocked, dopamine had no additional effect on the LP cell. 6. We used the dynamic clamp technique to further study the relative roles of IA and Ih modulation in dopamine's phase advance of the LP cell. We blocked the endogenous Ih with Cs+ and replaced it with a simulated current generated by a computer model of Ih. The neuron with simulated Ih gave curves relating the hyperpolarizing prepulse amplitude to first spike latency that were the same as in the untreated cell. Changing the computer parameters of the simulated Ih to those induced by dopamine without changing IA caused only a slight reduction in first spike latency, which was approximately 20% of the total reduction caused by dopamine in an untreated cell. Bath application of dopamine in the presence of Cs+ and simulated Ih (with control parameters) allowed us to determine the effect of altering IA but not Ih: this caused a significant reduction in first spike latency, but it was still only approximately 70% of the effect of dopamine in the untreated cell. Finally, in the continued presence of dopamine, changing the parameters of the simulated Ih to those observed with dopamine reduced the first spike latency to that seen with dopamine in the untreated cell. 7. We generated a mathematical model of the lobster LP neuron, based on the model of Buchholtz et al. for the crab LP neuron.


Assuntos
Dopamina/fisiologia , Neurônios Motores/fisiologia , Animais , Limiar Diferencial , Dopamina/farmacologia , Condutividade Elétrica , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/fisiologia , Modelos Neurológicos , Neurônios Motores/efeitos dos fármacos , Nephropidae , Inibição Neural , Técnicas de Patch-Clamp , Periodicidade , Potássio/fisiologia , Piloro/inervação , Piloro/fisiologia , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...