Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2615: 57-75, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36807784

RESUMO

For most eukaryotes, sequencing and assembly of the mitochondrial DNA (mtDNA) is possible by starting the analysis from total cellular DNA, but the exploration of the mtDNA of plants is more challenging because of the low copy number, limited sequence conservation, and complex structure of the mtDNA. The very large size of the nuclear genome of many plant species and the very high ploidy of the plastidial genome further complicate the analysis, sequencing, and assembly of plant mitochondrial genomes. An enrichment of mtDNA is therefore necessary. For this, plant mitochondria are purified prior to mtDNA extraction and purification. The relative enrichment in mtDNA can be assessed by qPCR, while the absolute enrichment can be deduced from the proportion of NGS reads mapping to each of the three genomes of the plant cell. Here we present methods for mitochondrial purification and mtDNA extraction applied to different plant species and tissues, and compare the mtDNA enrichment obtained with the different procedures.


Assuntos
DNA Mitocondrial , Genoma Mitocondrial , DNA Mitocondrial/genética , Mitocôndrias/genética , Plantas/genética , Genoma de Planta , Análise de Sequência de DNA/métodos
2.
PLoS Genet ; 18(5): e1010202, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35550632

RESUMO

Mitochondria of flowering plants have large genomes whose structure and segregation are modulated by recombination activities. The post-synaptic late steps of mitochondrial DNA (mtDNA) recombination are still poorly characterized. Here we show that RADA, a plant ortholog of bacterial RadA/Sms, is an organellar protein that drives the major branch-migration pathway of plant mitochondria. While RadA/Sms is dispensable in bacteria, RADA-deficient Arabidopsis plants are severely impacted in their development and fertility, correlating with increased mtDNA recombination across intermediate-size repeats and accumulation of recombination-generated mitochondrial subgenomes. The radA mutation is epistatic to recG1 that affects the additional branch migration activity. In contrast, the double mutation radA recA3 is lethal, underlining the importance of an alternative RECA3-dependent pathway. The physical interaction of RADA with RECA2 but not with RECA3 further indicated that RADA is required for the processing of recombination intermediates in the RECA2-depedent recombination pathway of plant mitochondria. Although RADA is dually targeted to mitochondria and chloroplasts we found little to no effects of the radA mutation on the stability of the plastidial genome. Finally, we found that the deficient maintenance of the mtDNA in radA apparently triggers a retrograde signal that activates nuclear genes repressing cell cycle progression.


Assuntos
Arabidopsis , DNA Mitocondrial , Arabidopsis/genética , Arabidopsis/metabolismo , Pontos de Checagem do Ciclo Celular/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Plantas/genética , Recombinação Genética
3.
Methods Mol Biol ; 2363: 301-319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34545500

RESUMO

Mitochondrial functions depend on the proper maintenance and expression of the mitochondrial genome (mtDNA). Therefore, understanding mtDNA replication and repair requires methods to assess its integrity. Mutations or chemical treatments that affect processes involved in the maintenance or stability of the mtDNA can affect its global copy number, but also the relative abundance of different genomic regions or the frequency of illegitimate recombination across repeated sequences. These can be conveniently tested by quantitative PCR (qPCR). Arabidopsis thaliana offers several advantages for studying these processes, because of the extensive collections of mutants, natural accessions and other genetic resources available from stock centers. Here we describe protocols we routinely use to explore changes in mtDNA copy number and relative stoichiometry in Arabidopsis mutants of genes involved in the replication, repair and recombination of the mtDNA.


Assuntos
Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Variações do Número de Cópias de DNA , DNA Mitocondrial/genética , Mitocôndrias/genética
4.
Front Plant Sci ; 12: 697136, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381482

RESUMO

The involvement of the different Lactuca species in the domestication and diversification of cultivated lettuce is not totally understood. Lactuca serriola is considered as the direct ancestor and the closest relative to Lactuca sativa, while the other wild species that can be crossed with L. sativa, Lactuca virosa, and Lactuca saligna, would have just contributed to the latter diversification of cultivated typologies. To contribute to the study of Lactuca evolution, we assembled the mtDNA genomes of nine Lactuca spp. accessions, among them three from L. virosa, whose mtDNA had not been studied so far. Our results unveiled little to no intraspecies variation among Lactuca species, with the exception of L. serriola where the accessions we sequenced diverge significantly from the mtDNA of a L. serriola accession already reported. Furthermore, we found a remarkable phylogenetic closeness between the mtDNA of L. sativa and the mtDNA of L. virosa, contrasting to the L. serriola origin of the nuclear and plastidial genomes. These results suggest that a cross between L. virosa and the ancestor of cultivated lettuce is at the origin of the actual mitochondrial genome of L. sativa.

5.
Nat Plants ; 6(1): 13-21, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31932677

RESUMO

Assessment of the impact of variation in chloroplast and mitochondrial DNA (collectively termed the plasmotype) on plant phenotypes is challenging due to the difficulty in separating their effect from nuclear-derived variation (the nucleotype). Haploid-inducer lines can be used as efficient plasmotype donors to generate new plasmotype-nucleotype combinations (cybrids)1. We generated a panel comprising all possible cybrids of seven Arabidopsis thaliana accessions and extensively phenotyped these lines for 1,859 phenotypes under both stable and fluctuating conditions. We show that natural variation in the plasmotype results in both additive and epistatic effects across all phenotypic categories. Plasmotypes that induce more additive phenotypic changes also cause more epistatic effects, suggesting a possible common basis for both additive and epistatic effects. On average, epistatic interactions explained twice as much of the variance in phenotypes as additive plasmotype effects. The impact of plasmotypic variation was also more pronounced under fluctuating and stressful environmental conditions. Thus, the phenotypic impact of variation in plasmotypes is the outcome of multi-level nucleotype-plasmotype-environment interactions and, as such, the plasmotype is likely to serve as a reservoir of variation that is predominantly exposed under certain conditions. The production of cybrids using haploid inducers is a rapid and precise method for assessment of the phenotypic effects of natural variation in organellar genomes. It will facilitate efficient screening of unique nucleotype-plasmotype combinations to both improve our understanding of natural variation in these combinations and identify favourable combinations to enhance plant performance.


Assuntos
Arabidopsis/genética , Genoma de Planta , Organelas/genética , Fenótipo , Hibridização Genética
6.
Plant J ; 97(3): 430-446, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30317699

RESUMO

Nucleotide biosynthesis proceeds through a de novo pathway and a salvage route. In the salvage route, free bases and/or nucleosides are recycled to generate the corresponding nucleotides. Thymidine kinase (TK) is the first enzyme in the salvage pathway to recycle thymidine nucleosides as it phosphorylates thymidine to yield thymidine monophosphate. The Arabidopsis genome contains two TK genes -TK1a and TK1b- that show similar expression patterns during development. In this work, we studied the respective roles of the two genes during early development and in response to genotoxic agents targeting the organellar or the nuclear genome. We found that the pyrimidine salvage pathway is crucial for chloroplast development and genome replication, as well as for the maintenance of its integrity, and is thus likely to play a crucial role during the transition from heterotrophy to autotrophy after germination. Interestingly, defects in TK activity could be partially compensated by supplementation of the medium with sugar, and this effect resulted from both the availability of a carbon source and the activation of the nucleotide de novo synthesis pathway, providing evidence for a compensation mechanism between two routes of nucleotide biosynthesis that depend on nutrient availability. Finally, we found differential roles of the TK1a and TK1b genes during the plant response to genotoxic stress, suggesting that different pools of nucleotides exist within the cells and are required to respond to different types of DNA damage. Altogether, our results highlight the importance of the pyrimidine salvage pathway, both during plant development and in response to genotoxic stress.


Assuntos
Arabidopsis/genética , Genoma de Planta/genética , Pirimidinas/metabolismo , Timidina Quinase/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Cloroplastos/metabolismo , Dano ao DNA , Nucleotídeos/metabolismo , Timidina/metabolismo , Timidina Quinase/genética
7.
Plant Physiol ; 178(4): 1643-1656, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30305373

RESUMO

Thymidine kinase (TK) is a key enzyme of the salvage pathway that recycles thymidine nucleosides to produce deoxythymidine triphosphate. Here, we identified the single TK of maize (Zea mays), denoted CPTK1, as necessary in the replication of the plastidial genome (cpDNA), demonstrating the essential function of the salvage pathway during chloroplast biogenesis. CPTK1 localized to both plastids and mitochondria, and its absence resulted in an albino phenotype, reduced cpDNA copy number and a severe deficiency in plastidial ribosomes. Mitochondria were not affected, indicating they are less reliant on the salvage pathway. Arabidopsis (Arabidopsis thaliana) TKs, TK1A and TK1B, apparently resulted from a gene duplication after the divergence of monocots and dicots. Similar but less-severe effects were observed for Arabidopsis tk1a tk1b double mutants in comparison to those in maize cptk1 TK1B was important for cpDNA replication and repair in conditions of replicative stress but had little impact on the mitochondrial phenotype. In the maize cptk1 mutant, the DNA from the small single-copy region of the plastidial genome was reduced to a greater extent than other regions, suggesting preferential abortion of replication in this region. This was accompanied by the accumulation of truncated genomes that resulted, at least in part, from unfaithful microhomology-mediated repair. These and other results suggest that the loss of normal cpDNA replication elicits the mobilization of new replication origins around the rpoB (beta subunit of plastid-encoded RNA polymerase) transcription unit and imply that increased transcription at rpoB is associated with the initiation of cpDNA replication.


Assuntos
Replicação do DNA/genética , Genomas de Plastídeos/genética , Proteínas de Plantas/metabolismo , Timidina Quinase/metabolismo , Zea mays/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/genética , DNA de Cloroplastos/genética , DNA de Cloroplastos/metabolismo , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Ribossomos Mitocondriais/metabolismo , Mutação , Proteínas de Plantas/genética , Biossíntese de Proteínas , Timidina Quinase/genética
8.
Annu Rev Plant Biol ; 68: 225-252, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28226235

RESUMO

The large mitochondrial genomes of angiosperms are unusually dynamic because of recombination activities involving repeated sequences. These activities generate subgenomic forms and extensive genomic variation even within the same species. Such changes in genome structure are responsible for the rapid evolution of plant mitochondrial DNA and for the variants associated with cytoplasmic male sterility and abnormal growth phenotypes. Nuclear genes modulate these processes, and over the past decade, several of these genes have been identified. They are involved mainly in pathways of DNA repair by homologous recombination and mismatch repair, which appear to be essential for the faithful replication of the mitogenome. Mutations leading to the loss of any of these activities release error-prone repair pathways, resulting in increased ectopic recombination, genome instability, and heteroplasmy. We review the present state of knowledge of the genes and pathways underlying mitochondrial genome stability.


Assuntos
DNA Mitocondrial , Genoma Mitocondrial , Magnoliopsida/genética , Reparo do DNA , DNA de Plantas/metabolismo , Tamanho do Genoma , Recombinação Homóloga , Mitocôndrias/genética , Mitocôndrias/metabolismo , Modelos Genéticos , Mutação
9.
Plant Cell ; 29(1): 109-128, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062752

RESUMO

Seed germination is a vital developmental transition for production of progeny by sexual reproduction in spermatophytes. Quiescent cells in nondormant dry embryos are reawakened first by imbibition and then by perception of germination triggers. Reanimated tissues enter into a germination program requiring energy for expansion growth. However, germination requires that embryonic tissues develop to support the more energy-demanding processes of cell division and organogenesis of the new seedling. Reactivation of mitochondria to supply the required energy is thus a key process underpinning germination and seedling survival. Using live imaging, we investigated reactivation of mitochondrial bioenergetics and dynamics using Arabidopsis thaliana as a model. Bioenergetic reactivation, visualized by presence of a membrane potential, is immediate upon rehydration. However, reactivation of mitochondrial dynamics only occurs after transfer to germination conditions. Reactivation of mitochondrial bioenergetics is followed by dramatic reorganization of the chondriome (all mitochondrial in a cell, collectively) involving massive fusion and membrane biogenesis to form a perinuclear tubuloreticular structure enabling mixing of previously discrete mitochondrial DNA nucleoids. The end of germination coincides with fragmentation of the chondriome, doubling of mitochondrial number, and heterogeneous redistribution of nucleoids among the mitochondria, generating a population of mitochondria tailored to seedling growth.


Assuntos
Arabidopsis/metabolismo , Mitocôndrias/metabolismo , Plântula/metabolismo , Sementes/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metabolismo Energético/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Germinação/genética , Microscopia Confocal , Mitocôndrias/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Imagem com Lapso de Tempo/métodos , Água/metabolismo
10.
Biochem J ; 473(6): 717-31, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26699905

RESUMO

Dehydroascorbate reductases (DHARs), enzymes belonging to the GST superfamily, catalyse the GSH-dependent reduction of dehydroascorbate into ascorbate in plants. By maintaining a reduced ascorbate pool, they notably participate to H2O2 detoxification catalysed by ascorbate peroxidases (APXs). Despite this central role, the catalytic mechanism used by DHARs is still not well understood and there is no supportive 3D structure. In this context, we have performed a thorough biochemical and structural analysis of the three poplar DHARs and coupled this to the analysis of their transcript expression patterns and subcellular localizations. The transcripts for these genes are mainly detected in reproductive and green organs and the corresponding proteins are expressed in plastids, in the cytosol and in the nucleus, but not in mitochondria and peroxisomes where ascorbate regeneration is obviously necessary. Comparing the kinetic properties and the sensitivity to GSSG-mediated oxidation of DHAR2 and DHAR3A, exhibiting 1 or 3 cysteinyl residues respectively, we observed that the presence of additional cysteines in DHAR3A modifies the regeneration mechanism of the catalytic cysteine by forming different redox states. Finally, from the 3D structure of DHAR3A solved by NMR, we were able to map the residues important for the binding of both substrates (GSH and DHA), showing that DHAR active site is very selective for DHA recognition and providing further insights into the catalytic mechanism and the roles of the additional cysteines found in some DHARs.


Assuntos
Ácido Ascórbico/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Oxirredutases/metabolismo , Populus/metabolismo , Sítios de Ligação , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformação Proteica , Nicotiana
11.
Plant Cell ; 27(10): 2907-25, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26462909

RESUMO

The mitochondria of flowering plants have considerably larger and more complex genomes than the mitochondria of animals or fungi, mostly due to recombination activities that modulate their genomic structures. These activities most probably participate in the repair of mitochondrial DNA (mtDNA) lesions by recombination-dependent processes. Rare ectopic recombination across short repeats generates new genomic configurations that contribute to mtDNA heteroplasmy, which drives rapid evolution of the sequence organization of plant mtDNAs. We found that Arabidopsis thaliana RECG1, an ortholog of the bacterial RecG translocase, is an organellar protein with multiple roles in mtDNA maintenance. RECG1 targets to mitochondria and plastids and can complement a bacterial recG mutant that shows defects in repair and replication control. Characterization of Arabidopsis recG1 mutants showed that RECG1 is required for recombination-dependent repair and for suppression of ectopic recombination in mitochondria, most likely because of its role in recovery of stalled replication forks. The analysis of alternative mitotypes present in a recG1 line and of their segregation following backcross allowed us to build a model to explain how a new stable mtDNA configuration, compatible with normal plant development, can be generated by stoichiometric shift.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Reparo do DNA , Replicação do DNA , DNA Mitocondrial/genética , Proteínas de Membrana Transportadoras/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , DNA de Plantas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Técnicas de Inativação de Genes , Proteínas de Membrana Transportadoras/genética , Mitocôndrias/metabolismo , Modelos Moleculares , Mutação , Fenótipo , Filogenia , Plastídeos/metabolismo , Recombinação Genética
12.
Biochimie ; 117: 48-62, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26143009

RESUMO

Originally focused on the nuclear and cytosolic compartments, the concept of regulation driven by non-coding RNAs (ncRNAs) is extending to mitochondria and chloroplasts. These organelles have distinct genetic systems that need coordination with cellular demands. In mammals, nuclear-encoded microRNAs were found associated with the mitochondria. Some of these contribute to the regulation of mitochondrial transcription and translation. Others were proposed to be stored in the organelles and to be released for regulation of nuclear transcripts. Further ncRNAs of various sizes derive from the mitochondrial genome and it was speculated that organelles host antisense or RNA interference pathways. Long ncRNAs mapping to the mitochondrial DNA seem to operate in the nucleus. Altogether, the origin and trafficking of ncRNAs categorized as mitochondrial in mammals raise questions far beyond the current knowledge. In protozoa, hundreds of guide RNAs specify editing events needed to generate functional messenger RNAs. Only few ncRNAs have been reported in plant mitochondria, but editing sites were revealed in non-coding regions of the organellar genome, suggesting that the corresponding transcripts have a function. Conversely, numerous ncRNA candidates were identified in chloroplasts, essentially mapping to the plastid genome. A synthetic view of the data with their functional implications is given here.


Assuntos
Cloroplastos/genética , Regulação da Expressão Gênica , Mitocôndrias/genética , Plantas/genética , RNA não Traduzido/genética , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Humanos , Modelos Genéticos , RNA não Traduzido/metabolismo
13.
Nucleic Acids Res ; 43(13): 6500-10, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26048959

RESUMO

Transcript splicing in plant mitochondria involves numerous nucleus-encoded factors, most of which are of eukaryotic origin. Some of these belong to protein families initially characterised to perform unrelated functions. The RAD52-like ODB1 protein has been reported to have roles in homologous recombination-dependent DNA repair in the nuclear and mitochondrial compartments in Arabidopsis thaliana. We show that it is additionally involved in splicing and facilitates the excision of two cis-spliced group II introns, nad1 intron 2 and nad2 intron 1, in Arabidopsis mitochondria. odb1 mutants lacking detectable amounts of ODB1 protein over-accumulated incompletely spliced nad1 and nad2 transcripts. The two ODB1-dependent introns were both found to splice via first-step hydrolysis and to be released as linear or circular molecules instead of lariats. Our systematic analysis of the structures of excised introns in Arabidopsis mitochondria revealed several other hydrolytically spliced group II introns in addition to nad1 intron 2 and nad2 intron 1, indicating that ODB1 is not a general determinant of the hydrolytic splicing pathway.


Assuntos
Proteínas de Arabidopsis/fisiologia , Proteínas de Ligação a DNA/fisiologia , Íntrons , Mitocôndrias/genética , Proteínas Mitocondriais/fisiologia , Splicing de RNA , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Hidrólise , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , RNA/metabolismo , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , RNA Mitocondrial
14.
FEBS Lett ; 589(1): 37-44, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25455804

RESUMO

Glutathionyl-hydroquinone reductases (GHRs) catalyze the deglutathionylation of quinones via a catalytic cysteine. The two GHR genes in the Populus trichocarpa genome, Pt-GHR1 and Pt-GHR2, are primarily expressed in reproductive organs. Both proteins are localized in plastids. More specifically, Pt-GHR2 localizes in nucleoids. At the structural level, Pt-GHR1 adopts a typical GHR fold, with a dimerization interface comparable to that of the bacterial and fungal GHR counterparts. Pt-GHR1 catalyzes the deglutathionylation of both reduced and oxidized glutathionylated quinones, but the enzyme is more catalytically efficient with the reduced forms.


Assuntos
Proteínas de Cloroplastos/metabolismo , Oxirredutases/metabolismo , Populus/enzimologia , Dobramento de Proteína , Multimerização Proteica/fisiologia , Domínio Catalítico , Proteínas de Cloroplastos/química , Proteínas de Cloroplastos/genética , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Populus/genética
15.
Biochem J ; 462(1): 39-52, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24825169

RESUMO

GSTs represent a superfamily of multifunctional proteins which play crucial roles in detoxification processes and secondary metabolism. Instead of promoting the conjugation of glutathione to acceptor molecules as do most GSTs, members of the Lambda class (GSTLs) catalyse deglutathionylation reactions via a catalytic cysteine residue. Three GSTL genes (Pt-GSTL1, Pt-GSTL2 and Pt-GSTL3) are present in Populus trichocarpa, but two transcripts, differing in their 5' extremities, were identified for Pt-GSTL3. Transcripts for these genes were primarily found in flowers, fruits, petioles and buds, but not in leaves and roots, suggesting roles associated with secondary metabolism in these organs. The expression of GFP-fusion proteins in tobacco showed that Pt-GSTL1 is localized in plastids, whereas Pt-GSTL2 and Pt-GSTL3A and Pt-GSTL3B are found in both the cytoplasm and the nucleus. The resolution of Pt-GSTL1 and Pt-GSTL3 structures by X-ray crystallography indicated that, although these proteins adopt a canonical GST fold quite similar to that found in dimeric Omega GSTs, their non-plant counterparts, they are strictly monomeric. This might explain some differences in the enzymatic properties of both enzyme types. Finally, from competition experiments between aromatic substrates and a fluorescent probe, we determined that the recognition of glutathionylated substrates is favoured over non-glutathionylated forms.


Assuntos
Glutationa Transferase/química , Núcleo Celular/enzimologia , Cristalografia por Raios X , Citoplasma/enzimologia , Genes de Plantas , Glutationa/análogos & derivados , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Cinética , Populus/enzimologia , Populus/genética , Dobramento de Proteína , Multimerização Proteica , Especificidade por Substrato
16.
Mitochondrion ; 19 Pt B: 323-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24561574

RESUMO

The structural complexity of plant mitochondrial genomes correlates with the variety of single-strand DNA-binding proteins found in plant mitochondria. Most of these are plant-specific and have roles in homologous recombination and genome maintenance. Mitochondrial nucleoids thus differ fundamentally between plants and yeast or animals, where the principal nucleoid protein is a DNA-packaging protein that binds double-stranded DNA. Major transcriptional cofactors identified in mitochondria of non-plant species are also seemingly absent from plants. This article reviews current knowledge on plant mitochondrial DNA-binding proteins and discusses that those may affect the accessibility and conformation of transcription start sites, thus functioning as transcriptional modulators without being dedicated transcription factors.


Assuntos
Proteínas de Ligação a DNA , Proteínas Mitocondriais , Proteínas de Plantas , Transcrição Gênica , DNA de Plantas/metabolismo , Conformação de Ácido Nucleico , Sítio de Iniciação de Transcrição
17.
Mol Plant ; 7(1): 187-205, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24203231

RESUMO

A functional relationship between monothiol glutaredoxins and BolAs has been unraveled by genomic analyses and in several high-throughput studies. Phylogenetic analyses coupled to transient expression of green fluorescent protein (GFP) fusions indicated that, in addition to the sulfurtransferase SufE1, which contains a C-terminal BolA domain, three BolA isoforms exist in Arabidopsis thaliana, BolA1 being plastidial, BolA2 nucleo-cytoplasmic, and BolA4 dual-targeted to mitochondria and plastids. Binary yeast two-hybrid experiments demonstrated that all BolAs and SufE1, via its BolA domain, can interact with all monothiol glutaredoxins. Most interactions between protein couples of the same subcellular compartment have been confirmed by bimolecular fluorescence complementation. In vitro experiments indicated that monothiol glutaredoxins could regulate the redox state of BolA2 and SufE1, both proteins possessing a single conserved reactive cysteine. Indeed, a glutathionylated form of SufE1 lost its capacity to activate the cysteine desulfurase, Nfs2, but it is reactivated by plastidial glutaredoxins. Besides, a monomeric glutathionylated form and a dimeric disulfide-bridged form of BolA2 can be preferentially reduced by the nucleo-cytoplasmic GrxS17. These results indicate that the glutaredoxin-BolA interaction occurs in several subcellular compartments and suggest that a redox regulation mechanism, disconnected from their capacity to form iron-sulfur cluster-bridged heterodimers, may be physiologically relevant for BolA2 and SufE1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glutarredoxinas/metabolismo , Sulfurtransferases/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , Proteínas de Arabidopsis/química , Domínio Catalítico , Sequência Conservada , Proteínas de Ligação a DNA/química , Ativação Enzimática , Espaço Intracelular/metabolismo , Oxirredução , Fotossíntese , Filogenia , Ligação Proteica , Transporte Proteico
18.
Biochimie ; 100: 107-20, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24075874

RESUMO

Plant mitochondria have a complex and peculiar genetic system. They have the largest genomes, as compared to organelles from other eukaryotic organisms. These can expand tremendously in some species, reaching the megabase range. Nevertheless, whichever the size, the gene content remains modest and restricted to a few polypeptides required for the biogenesis of the oxidative phosphorylation chain complexes, ribosomal proteins, transfer RNAs and ribosomal RNAs. The presence of autonomous plasmids of essentially unknown function further enhances the level of complexity. The physical organization of the plant mitochondrial DNA includes a set of sub-genomic forms resulting from homologous recombination between repeats, with a mixture of linear, circular and branched structures. This material is compacted into membrane-bound nucleoids, which are the inheritance units but also the centers of genome maintenance and expression. Recombination appears to be an essential characteristic of plant mitochondrial genetic processes, both in shaping and maintaining the genome. Under nuclear surveillance, recombination is also the basis for the generation of new mitotypes and is involved in the evolution of the mitochondrial DNA. In line with, or as a consequence of its complex physical organization, replication of the plant mitochondrial DNA is likely to occur through multiple mechanisms, potentially involving recombination processes. We give here a synthetic view of these aspects.


Assuntos
DNA Mitocondrial/genética , Genoma Mitocondrial , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas de Plantas/genética , Plantas/genética , Reparo do DNA , Replicação do DNA , DNA Mitocondrial/química , DNA Mitocondrial/metabolismo , Regulação da Expressão Gênica , Tamanho do Genoma , Mitocôndrias/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Biossíntese de Proteínas , RNA de Transferência/química , RNA de Transferência/metabolismo , Recombinação Genética
19.
Plant Physiol ; 160(3): 1420-31, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22977281

RESUMO

Chloroplasts and other members of the plastid organelle family contain a small genome of bacterial ancestry. Young chloroplasts contain hundreds of genome copies, but the functional significance of this high genome copy number has been unclear. We describe molecular phenotypes associated with mutations in a nuclear gene in maize (Zea mays), white2 (w2), encoding a predicted organellar DNA polymerase. Weak and strong mutant alleles cause a moderate (approximately 5-fold) and severe (approximately 100-fold) decrease in plastid DNA copy number, respectively, as assayed by quantitative PCR and Southern-blot hybridization of leaf DNA. Both alleles condition a decrease in most chloroplast RNAs, with the magnitude of the RNA deficiencies roughly paralleling that of the DNA deficiency. However, some RNAs are more sensitive to a decrease in genome copy number than others. The rpoB messenger RNA (mRNA) exhibited a unique response, accumulating to dramatically elevated levels in response to a moderate reduction in plastid DNA. Subunits of photosynthetic enzyme complexes were reduced more severely than were plastid mRNAs, possibly because of impaired translation resulting from limiting ribosomal RNA, transfer RNA, and ribosomal protein mRNA. These results indicate that chloroplast genome copy number is a limiting factor for the expression of a subset of chloroplast genes in maize. Whereas in Arabidopsis (Arabidopsis thaliana) a pair of orthologous genes function redundantly to catalyze DNA replication in both mitochondria and chloroplasts, the w2 gene is responsible for virtually all chloroplast DNA replication in maize. Mitochondrial DNA copy number was reduced approximately 2-fold in mutants harboring strong w2 alleles, suggesting that w2 also contributes to mitochondrial DNA replication.


Assuntos
Cloroplastos/genética , Dosagem de Genes/genética , Regulação da Expressão Gênica de Plantas , Genes de Cloroplastos/genética , Zea mays/genética , Alelos , Southern Blotting , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , DNA Polimerase Dirigida por DNA/metabolismo , Loci Gênicos/genética , Mutação/genética , Fotossíntese/genética , RNA de Cloroplastos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Plant J ; 72(3): 423-35, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22762281

RESUMO

The plant mitochondrial DNA-binding protein ODB1 was identified from a mitochondrial extract after DNA-affinity purification. ODB1 (organellar DNA-binding protein 1) co-purified with WHY2, a mitochondrial member of the WHIRLY family of plant-specific proteins involved in the repair of organellar DNA. The Arabidopsis thaliana ODB1 gene is identical to RAD52-1, which encodes a protein functioning in homologous recombination in the nucleus but additionally localizing to mitochondria. We confirmed the mitochondrial localization of ODB1 by in vitro and in vivo import assays, as well as by immunodetection on Arabidopsis subcellular fractions. In mitochondria, WHY2 and ODB1 were found in large nucleo-protein complexes. Both proteins co-immunoprecipitated in a DNA-dependent manner. In vitro assays confirmed DNA binding by ODB1 and showed that the protein has higher affinity for single-stranded than for double-stranded DNA. ODB1 showed no sequence specificity in vitro. In vivo, DNA co-immunoprecipitation indicated that ODB1 binds sequences throughout the mitochondrial genome. ODB1 promoted annealing of complementary DNA sequences, suggesting a RAD52-like function as a recombination mediator. Arabidopsis odb1 mutants were morphologically indistinguishable from the wild-type, but following DNA damage by genotoxic stress, they showed reduced mitochondrial homologous recombination activity. Under the same conditions, the odb1 mutants showed an increase in illegitimate repair bypasses generated by microhomology-mediated recombination. These observations identify ODB1 as a further component of homologous recombination-dependent DNA repair in plant mitochondria.


Assuntos
Arabidopsis/genética , Brassica/genética , Reparo do DNA , DNA Mitocondrial/genética , Proteínas de Ligação a DNA/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassica/metabolismo , Cromatografia de Afinidade , Quebras de DNA de Cadeia Dupla , Dano ao DNA , DNA de Plantas/genética , Proteínas de Ligação a DNA/genética , Flores/genética , Flores/metabolismo , Recombinação Homóloga , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Especificidade de Órgãos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Plântula/genética , Plântula/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...