Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 9(7): 623-628, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30034590

RESUMO

Abdominal pain and abnormal bowel habits represent major symptoms for irritable bowel syndrome (IBS) patients that are not adequately managed. Although the etiology of IBS is not completely understood, many of the functions of the gastrointestinal (GI) tract are regulated by the enteric nervous system (ENS). Inflammation or stress-induced expression of growth factors or cytokines may lead to hyperinnervation of visceral afferent neurons in GI tract and contribute to the pathophysiology of IBS. Rearranged during transfection (RET) is a neuronal growth factor receptor tyrosine kinase critical for the development of the ENS as exemplified by Hirschsprung patients who carry RET loss-of-function mutations and lack normal colonic innervation leading to colonic obstruction. Similarly, RET signaling in the adult ENS maintains neuronal function by contributing to synaptic formation, signal transmission, and neuronal plasticity. Inhibition of RET in the ENS represents a novel therapeutic strategy for the normalization of neuronal function and the symptoms of IBS patients. Herein, we describe our screening effort and subsequent structure-activity relationships (SARs) in optimizing potency, selectivity, and mutagenicity of the series, which led to the discovery of a first-in-class, gut-restricted RET kinase inhibitor, 2-(4-(4-ethoxy-6-oxo-1,6-dihydropyridin-3-yl)-2-fluorophenyl)-N-(5-(1,1,1-trifluoro-2-methylpropan-2-yl)isoxazol-3-yl)acetamide (15, GSK3179106), as a clinical candidate for the treatment of IBS. GSK3179106 is a potent, selective, and gut-restricted pyridone hinge binder small molecule RET kinase inhibitor with a RET IC50 of 0.3 nM and is efficacious in vivo.

2.
Bioorg Med Chem Lett ; 25(24): 5743-7, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26546219

RESUMO

The propensity for cancer cells to accumulate additional centrosomes relative to normal cells could be exploited for therapeutic benefit in oncology. Following literature reports that suggested TNKS1 (tankyrase 1) and PARP16 may be involved with spindle structure and function and may play a role in suppressing multi-polar spindle formation in cells with supernumerary centrosomes, we initiated a phenotypic screen to look for small molecule poly (ADP-ribose) polymerase (PARP) enzyme family inhibitors that could produce a multi-polar spindle phenotype via declustering of centrosomes. Screening of AstraZeneca's collection of phthalazinone PARP inhibitors in HeLa cells using high-content screening techniques identified several compounds that produced a multi-polar spindle phenotype at low nanomolar concentrations. Characterization of these compounds across a broad panel of PARP family enzyme assays indicated that they had activity against several PARP family enzymes, including PARP1, 2, 3, 5a, 5b, and 6. Further optimization of these initial hits for improved declustering potency, solubility, permeability, and oral bioavailability resulted in AZ0108, a PARP1, 2, 6 inhibitor that potently inhibits centrosome clustering and is suitable for in vivo efficacy and tolerability studies.


Assuntos
Centrossomo/metabolismo , Ftalazinas/química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Administração Oral , Animais , Sítios de Ligação , Células CACO-2 , Centrossomo/efeitos dos fármacos , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Células HeLa , Humanos , Microssomos/metabolismo , Conformação Molecular , Simulação de Dinâmica Molecular , Ftalazinas/administração & dosagem , Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Estrutura Terciária de Proteína , Ratos , Tanquirases/antagonistas & inibidores , Tanquirases/metabolismo
3.
Bioorg Med Chem Lett ; 23(10): 3105-10, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23562594

RESUMO

The discovery of the activating mutation V617F in the JH2 domain of Jak2 and the modulation of oncogenic Stat3 by Jak2 inhibitors have spurred a great interest in the inhibition of the Jak2/Stat pathway in oncology. In this Letter, we communicate the discovery of novel inhibitors of the Jak2/Stat5 axis, the N-(1H-pyrazol-3-yl)pyrimidin-2-amino derivatives. The rationale, synthesis and biological evaluation of these derivatives are reported. Two lead analogs from this series, 6 and 9, displayed prolonged residence time on Jak2, at enzymatic level. Although 6 and 9 exhibited moderate selectivity in a selected kinase panel, we chose to test these inhibitors in vivo as a consequence to their long residence time. However, extended inhibition of Jak2 due to the long residence time, in the form of inhibiting phosphorylation of downstream Stat5, was not recapitulated in an in vivo setting.


Assuntos
Descoberta de Drogas , Janus Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT5/antagonistas & inibidores , Animais , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Cães , Relação Dose-Resposta a Droga , Feminino , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Modelos Moleculares , Conformação Molecular , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Ratos , Ratos Wistar , Fator de Transcrição STAT5/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Fatores de Tempo
5.
Mol Cancer Ther ; 5(7): 1774-82, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16891463

RESUMO

Receptor tyrosine kinases (RTK), such as vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), stem cell factor receptor (KIT), and fms-like tyrosine kinase 3 (FLT3), are expressed in malignant tissues and act in concert, playing diverse and major roles in angiogenesis, tumor growth, and metastasis. With the exception of a few malignancies, seemingly driven by a single genetic mutation in a signaling protein, most tumors are the product of multiple mutations in multiple aberrant signaling pathways. Consequently, simultaneous targeted inhibition of multiple signaling pathways could be more effective than inhibiting a single pathway in cancer therapies. Such a multitargeted strategy has recently been validated in a number of preclinical and clinical studies using RTK inhibitors with broad target selectivity. SU14813, a small molecule identified from the same chemical library used to isolate sunitinib, has broad-spectrum RTK inhibitory activity through binding to and inhibition of VEGFR, PDGFR, KIT, and FLT3. In cellular assays, SU14813 inhibited ligand-dependent and ligand-independent proliferation, migration, and survival of endothelial cells and/or tumor cells expressing these targets. SU14813 inhibited VEGFR-2, PDGFR-beta, and FLT3 phosphorylation in xenograft tumors in a dose- and time-dependent fashion. The plasma concentration required for in vivo target inhibition was estimated to be 100 to 200 ng/mL. Used as monotherapy, SU14813 exhibited broad and potent antitumor activity resulting in regression, growth arrest, or substantially reduced growth of various established xenografts derived from human or rat tumor cell lines. Treatment in combination with docetaxel significantly enhanced both the inhibition of primary tumor growth and the survival of the tumor-bearing mice compared with administration of either agent alone. In summary, SU14813 inhibited target RTK activity in vivo in association with reduction in angiogenesis, target RTK-mediated proliferation, and survival of tumor cells, leading to broad and potent antitumor efficacy. These data support the ongoing phase I clinical evaluation of SU14813 in advanced malignancies.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Antineoplásicos/uso terapêutico , Indóis/uso terapêutico , Morfolinas/uso terapêutico , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células , Humanos , Indóis/química , Indóis/farmacologia , Camundongos , Morfolinas/química , Morfolinas/farmacologia , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Ratos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Células Tumorais Cultivadas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Bioorg Med Chem Lett ; 14(1): 187-90, 2004 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-14684325

RESUMO

A novel series of substituted 3-[3-(aminopropyl)-4,5,6,7-tetrahydro-1H-indol-2-ylmethylene]-1,3-dihydro-indole-2-ones was discovered as potent inhibitors of the non-receptor tyrosine kinase Src and Yes. A structure-activity relationship was developed in order to optimize their potency and selectivity. Syntheses of these compounds are also described herein.


Assuntos
Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Indóis/síntese química , Indóis/farmacologia , Quinases da Família src/antagonistas & inibidores , Desenho de Fármacos , Relação Estrutura-Atividade , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...