Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 42(9): 1960-1970, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37283217

RESUMO

Phosphorus (P) is critical for algal growth and resistance to environmental stress. However, little is known about the effects of P supply on the lead (Pb) toxicity and accumulation in microalgae. We set up two P concentrations, 315 (PL ) and 3150 µg L-1 (PH ), in algal culture, and the responses of Chlamydomonas reinhardtii to various Pb treatments (0, 200, 500, 1000, 2000, and 5000 µg L-1 ) were investigated. Compared with the PL condition, PH promoted cell growth but reduced cellular respiration by approximately 50%. Moreover, PH alleviated damage to the photosynthetic system in algal cells after Pb stress. After exposure to 200-2000 µg L-1 Pb, higher Pb2+ concentrations and Pb removal were observed in the PL medium. However, under exposure to 5000 µg L-1 Pb, less Pb2+ was present but more Pb was removed by the algal cells in the PH medium. More P supply enhanced the secretion of extracellular fluorescent substances by C. reinhardtii. Transcriptomic analysis showed that genes associated with synthesis of phospholipids, tyrosine-like proteins, ferredoxin, and RuBisCO were up-regulated after Pb exposure. Together the findings of our study demonstrated the critical roles of P in Pb accumulation and resistance in C. reinhardtii. Environ Toxicol Chem 2023;42:1960-1970. © 2023 SETAC.


Assuntos
Chlamydomonas reinhardtii , Chumbo/toxicidade , Chumbo/metabolismo , Fósforo/farmacologia
2.
Ecotoxicol Environ Saf ; 242: 113856, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35809392

RESUMO

Arsenic (As) and lead (Pb) are frequently emitted from various sources into environment, but microbial responses to their combined toxicity have not been systematically investigated. In this study, Chlamydomonas reinhardtii was exposed to two levels of arsenate (As (V), 50, 500 µg/L), Pb (II) (500, 5000 µg/L) and their mixture (50 µg/L As (V) + 500 µg/L Pb (II); 500 µg/L As (V) + 5000 µg/L Pb (II)). The growth of C. reinhardtii was inhibited more remarkably by As (V) than by Pb (II). The As stress was alleviated by Pb in the 50 µg/L As (V) + 500 µg/L Pb (II) treatment, but was enhanced upon the 500 µg/L As (V) + 5000 µg/L Pb (II) exposure, with more pronounced changes in a number of physiological parameters of the algal cells. Proteomic results showed that 71 differently expressed proteins (DEPs) in the treatment of 50 µg/L As (V) + 500 µg/L Pb (II), and 167 DEPs were identified in that of 500 µg/L As (V) + 5000 µg/L Pb (II). These proteins were involved in energy metabolism, photosynthetic carbon fixation, reactive oxygen scavenging and defense, and amino acid synthesis. Taken together, these physiological and proteomic data demonstrated that C. reinhardtii could resist the As (V) and Pb (II) combined treatments through extracellular complexation and intracellular pathways.


Assuntos
Arsênio , Chlamydomonas reinhardtii , Arseniatos/metabolismo , Arseniatos/toxicidade , Arsênio/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chumbo/metabolismo , Chumbo/toxicidade , Proteômica/métodos
3.
Ecotoxicol Environ Saf ; 229: 113091, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34922168

RESUMO

Polysaccharides supply energy for various metabolic processes in cells. However, their roles in the arsenate (As(V)) resistance in microalgae remain largely unknown. Here, we explored the synthesis and transformation of polysaccharides in Chlamydomonas reinhardtii upon various levels of As(V) stress, using a number of physiological indexes along with transmission electron microscopic (TEM) and proteomic analyses. When exposed to low concentration of As(V) (0-20 µg/L), C. reinhardtii accumulated starch and produced more extracellular polysaccharides. At 50 µg/L As(V) treatment, starch accumulation gradually shifted to polysaccharides decomposition in the algal cells. Under higher As(V) concentration (500 µg/L), significantly more proteins in fatty acid metabolic pathway were differentially expressed, indicating that cells redirected carbon flux and transformed lipids into polysaccharides. The findings of this study demonstrate that polysaccharides may be critically involved in the As(V) resistance of C. reinhardtii.


Assuntos
Chlamydomonas reinhardtii , Microalgas , Arseniatos/toxicidade , Proteômica , Amido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA