Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(10): 5428-5438, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38415591

RESUMO

Food-fermenting lactobacilli convert glycosylated phytochemicals to glycosyl hydrolases and thereby alter their biological activity. This study aimed to investigate the microbial transformation of ß-glucosides of phytochemicals in comparison with utilization of cellobiose. Four homofermentative and four heterofermentative lactobacilli were selected to represent the metabolic diversity of Lactobacillaceae. The genomes of Lactobacillus crispatus, Companilactobacillus paralimentarius, Lacticaseibacillus paracasei, and Lactiplantibacillus plantarum encoded for 8 to 22 enzymes, predominantly phospho-ß-glucosidases, with predicted activity on ß-glucosides. Levilactobacillus hammesii and Furfurilactobacillus milii encoded for 3 ß-glucosidases, Furfurilactobacillus rossiae for one, and Fructilactobacillus sanfranciscensis for none. The hydrolysis of amygdalin, esculin, salicin, glucosides of quercetin and genistein, and ginsenosides demonstrated that several strains hydrolyzed ß-glucosides of phytochemicals but not cellobiose. Taken together, several of the carbohydrate-active enzymes of food-fermenting lactobacilli are specific for glycosides of phytochemicals.


Assuntos
Celulases , Dissacarídeos , Glucosídeos/metabolismo , Lactobacillaceae/metabolismo , Celobiose , Compostos Fitoquímicos
2.
Microbiome ; 12(1): 38, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38395946

RESUMO

BACKGROUND: Although rumen development is crucial, hindgut undertakes a significant role in young ruminants' physiological development. High-starch diet is usually used to accelerate rumen development for young ruminants, but always leading to the enteral starch overload and hindgut dysbiosis. However, the mechanism behind remains unclear. The combination of colonic transcriptome, colonic luminal metabolome, and metagenome together with histological analysis was conducted using a goat model, with the aim to identify the potential molecular mechanisms behind the disrupted hindgut homeostasis by overload starch in young ruminants. RESULT: Compared with low enteral starch diet (LES), high enteral starch diet (HES)-fed goats had significantly higher colonic pathology scores, and serum diamine oxidase activity, and meanwhile significantly decreased colonic mucosal Mucin-2 (MUC2) protein expression and fecal scores, evidencing the HES-triggered colonic systemic inflammation. The bacterial taxa Prevotella sp. P4-67, Prevotella sp. PINT, and Bacteroides sp. CAG:927, together with fungal taxa Fusarium vanettenii, Neocallimastix californiae, Fusarium sp. AF-8, Hypoxylon sp. EC38, and Fusarium pseudograminearum, and the involved microbial immune pathways including the "T cell receptor signaling pathway" were higher in the colon of HES goats. The integrated metagenome and host transcriptome analysis revealed that these taxa were associated with enhanced pathogenic ability, antigen processing and presentation, and stimulated T helper 2 cell (TH2)-mediated cytokine secretion functions in the colon of HES goats. Further luminal metabolomics analysis showed increased relative content of chenodeoxycholic acid (CDCA) and deoxycholic acid (DCA), and decreased the relative content of hypoxanthine in colonic digesta of HES goats. These altered metabolites contributed to enhancing the expression of TH2-mediated inflammatory-related cytokine secretion including GATA Binding Protein 3 (GATA3), IL-5, and IL-13. Using the linear mixed effect model, the variation of MUC2 biosynthesis explained by the colonic bacteria, bacterial functions, fungi, fungal functions, and metabolites were 21.92, 20.76, 19.43, 12.08, and 44.22%, respectively. The variation of pathology scores explained by the colonic bacterial functions, fungal functions, and metabolites were 15.35, 17.61, and 57.06%. CONCLUSIONS: Our findings revealed that enteral starch overload can trigger interrupted hindgut host-microbiome homeostasis that led to impaired mucosal, destroyed colonic water absorption, and TH2-mediated inflammatory process. Except for the colonic metabolites mostly contribute to the impaired mucosa, the nonnegligible contribution from fungi deserves more future studies focused on the fungal functions in hindgut dysbiosis of young ruminants. Video Abstract.


Assuntos
Microbiota , Multiômica , Animais , Disbiose , Ruminantes/metabolismo , Ruminantes/microbiologia , Cabras , Citocinas , Dieta/veterinária , Amido/química , Amido/metabolismo
3.
J Anim Sci Biotechnol ; 14(1): 140, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941085

RESUMO

Ruminants play a critical role in our food system by converting plant biomass that humans cannot or choose not to consume into edible high-quality food. However, ruminant excreta is a significant source of nitrous oxide (N2O), a potent greenhouse gas with a long-term global warming potential 298 times that of carbon dioxide. Natural phytochemicals or forages containing phytochemicals have shown the potential to improve the efficiency of nitrogen (N) utilization and decrease N2O emissions from the excreta of ruminants. Dietary inclusion of tannins can shift more of the excreted N to the feces, alter the urinary N composition and consequently reduce N2O emissions from excreta. Essential oils or saponins could inhibit rumen ammonia production and decrease urinary N excretion. In grazed pastures, large amounts of glucosinolates or aucubin can be introduced into pasture soils when animals consume plants rich in these compounds and then excrete them or their metabolites in the urine or feces. If inhibitory compounds are excreted in the urine, they would be directly applied to the urine patch to reduce nitrification and subsequent N2O emissions. The phytochemicals' role in sustainable ruminant production is undeniable, but much uncertainty remains. Inconsistency, transient effects, and adverse effects limit the effectiveness of these phytochemicals for reducing N losses. In this review, we will identify some current phytochemicals found in feed that have the potential to manipulate ruminant N excretion or mitigate N2O production and deliberate the challenges and opportunities associated with using phytochemicals or forages rich in phytochemicals as dietary strategies for reducing N excretion and excreta-derived N2O emissions.

4.
Sci China Life Sci ; 66(12): 2877-2895, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37480471

RESUMO

Heat stress induces multi-organ damage and serious physiological dysfunction in mammals, and gut bacteria may translocate to extra-intestinal tissues under heat stress pathology. However, whether gut bacteria translocate to the key metabolic organs and impair function as a result of heat stress remains unknown. Using a heat stress-induced mouse model, heat stress inhibited epididymal white adipose tissue (eWAT) expansion and induced lipid metabolic disorder but did not damage other organs, such as the heart, liver, spleen, or muscle. Microbial profiling analysis revealed that heat stress shifted the bacterial community in the cecum and eWAT but not in the inguinal white adipose tissue, blood, heart, liver, spleen, or muscle. Notably, gut-vascular barrier function was impaired, and the levels of some bacteria, particularly Lactobacillus, were higher in the eWAT, as confirmed by catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) staining when mice were under heat stress. Moreover, integrated multi-omics analysis showed that the eWAT microbiota was associated with host lipid metabolism, and the expression of genes involved in the lipid metabolism in eWAT was upregulated under heat stress. A follow-up microbial supplementation study after introducing Lactobacillus plantarum to heat-stressed mice revealed that the probiotic ameliorated heat stress-induced loss of eWAT and dyslipidemia and reduced gut bacterial translocation to the eWAT by improving gut barrier function. Overall, our findings suggest that gut bacteria, particularly Lactobacillus spp., play a crucial role in heat stress-induced lipid metabolism disorder and that there is therapeutic potential for using probiotics, such as Lactobacillus plantarum.


Assuntos
Microbioma Gastrointestinal , Lactobacillus plantarum , Transtornos do Metabolismo dos Lipídeos , Probióticos , Camundongos , Animais , Metabolismo dos Lipídeos , Hibridização in Situ Fluorescente , Tecido Adiposo Branco/metabolismo , Transtornos do Metabolismo dos Lipídeos/metabolismo , Resposta ao Choque Térmico , Tecido Adiposo/metabolismo , Mamíferos
5.
Vet Sci ; 9(12)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36548822

RESUMO

Studying microRNA (miRNAs) in certain agri-food products is attractive because (1) they have potential as biomarkers that may allow traceability and authentication of such products; and (2) they may reveal insights into the products' functional potential. The present study evaluated differences in miRNAs levels in fat and cellular fractions of tank milk collected from commercial farms which employ extensive or intensive dairy production systems. We first sequenced miRNAs in three milk samples from each production system, and then validated miRNAs whose levels in the cellular and fat fraction differed significantly between the two production systems. To accomplish this, we used quantitative PCR with both fractions of tank milk samples from another 20 commercial farms. Differences in miRNAs were identified in fat fractions: overall levels of miRNAs, and, specifically, the levels of bta-mir-215, were higher in intensive systems than in extensive systems. Bovine mRNA targets for bta-miR-215 and their pathway analysis were performed. While the causes of these miRNAs differences remain to be elucidated, our results suggest that the type of production system could affect miRNAs levels and potential functionality of agri-food products of animal origin.

6.
Microb Pathog ; 173(Pt A): 105873, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36371065

RESUMO

Brachyspira hyodysenteriae, an etiologic agent of swine dysentery (SD), is known for causing colitis. Although some aspects of colonic defenses during infection have been described previously, a more comprehensive picture of the host and microbiota interaction in clinically affected animals is required. This study aimed to characterize multiple aspects of colonic innate defenses and microbiome factors in B. hyodysenteriae-infected pigs that accompany clinical presentation of hemorrhagic diarrhea. We examined colonic mucus barrier modifications, leukocyte infiltration, cathelicidin expression, as well as microbiome composition. We showed that B. hyodysenteriae infection caused microscopic hemorrhagic colitis with abundant neutrophil infiltration in the colonic lamina propria and lumen, with minor macrophage infiltration. Mucus hypersecretion with abundant sialylated mucus in the colon, as well as mucosal colonization by [Acetivibrio] ethanolgignens, Lachnospiraceae, and Campylobacter were pathognomonic of B. hyodysenteriae infection. These findings demonstrate that B. hyodysenteriae produces clinical disease through multiple effects on host defenses, involving alterations of mucosal innate immunity and microbiota. Given that B. hyodysenteriae is increasingly resistant to antimicrobials, this understanding of SD pathogenesis may lead to future development of non-antibiotic and anti-inflammatory alternative therapeutics.


Assuntos
Colite , Disenteria , Infecções por Bactérias Gram-Negativas , Microbiota , Infecções por Spirochaetales , Doenças dos Suínos , Suínos , Animais , Doenças dos Suínos/patologia , Disenteria/veterinária , Disenteria/patologia , Imunidade Inata , Infecções por Bactérias Gram-Negativas/patologia
7.
Animals (Basel) ; 12(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35953955

RESUMO

To assess the effects of residual feed intake (RFI) and breed on rumen microbiota, the abundance (DNA) and active population (RNA) of the total bacteria, archaea, protozoa, and fungi in the rumen of 96 beef steers from three different breeds (Angus (AN), Charolais (CH), and Kinsella Composite (KC)), and divergent RFIs (High vs Low), were estimated by measuring their respective maker gene copies using qRT-PCR. All experimental animals were kept under the same feedlot condition and fed with the same high-energy finishing diet. Rumen content samples were collected at slaughter and used for the extraction of genetic material (DNA and RNA) and further analysis. There was a significant difference (p < 0.01) between the marker gene copies detected for abundance and active populations for all four microbial groups. AN steers had a higher abundance of bacteria (p < 0.05) and a lower abundance of eukaryotes (protozoa and fungi, p < 0.05) compared to KC steers, while the abundance of protozoa (p < 0.05) in the AN cattle and fungi (p < 0.05) in the KC cattle were lower and higher, respectively, than those in the CH steers. Meanwhile, the active populations of bacteria, archaea, and protozoa in the KC steers were significantly lower than those in the AN and CH animals (p < 0.01). This work demonstrates that cattle breed can affect rumen microbiota at both the abundance and activity level. The revealed highly active protozoal populations indicate their important role in rumen microbial fermentation under a feedlot diet, which warrants further study.

8.
J Anim Sci ; 99(10)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34586400

RESUMO

Ruminant supply chains contribute 5.7 gigatons of CO2-eq per annum, which represents approximately 80% of the livestock sector emissions. One of the largest sources of emission in the ruminant sector is methane (CH4), accounting for approximately 40% of the sectors total emissions. With climate change being a growing concern, emphasis is being put on reducing greenhouse gas emissions, including those from ruminant production. Various genetic and environmental factors influence cattle CH4 production, such as breed, genetic makeup, diet, management practices, and physiological status of the host. The influence of genetic variability on CH4 yield in ruminants indicates that genomic selection for reduced CH4 emissions is possible. Although the microbiology of CH4 production has been studied, further research is needed to identify key differences in the host and microbiome genomes and how they interact with one another. The advancement of "-omics" technologies, such as metabolomics and metagenomics, may provide valuable information in this regard. Improved understanding of genetic mechanisms associated with CH4 production and the interaction between the microbiome profile and host genetics will increase the rate of genetic progress for reduced CH4 emissions. Through a systems biology approach, various "-omics" technologies can be combined to unravel genomic regions and genetic markers associated with CH4 production, which can then be used in selective breeding programs. This comprehensive review discusses current challenges in applying genomic selection for reduced CH4 emissions, and the potential for "-omics" technologies, especially metabolomics and metagenomics, to minimize such challenges. The integration and evaluation of different levels of biological information using a systems biology approach is also discussed, which can assist in understanding the underlying genetic mechanisms and biology of CH4 production traits in ruminants and aid in reducing agriculture's overall environmental footprint.


Assuntos
Gases de Efeito Estufa , Metano , Animais , Bovinos/genética , Metabolômica , Metagenômica , Metano/análise , Ruminantes/genética
9.
Microorganisms ; 9(2)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668643

RESUMO

Bacillus amyloliquefaciens TL promotes broiler chicken performance by improving nutrient absorption and utilization and reducing intestinal inflammation. In this study, RNA-sequencing (RNA-seq)-based transcriptomes of ileal tissues collected from probiotic-fed and control broiler chickens were analyzed to elucidate the effects of the probiotic B. amyloliquefaciens TL, as a feed additive, on the gut immune function. In total, 475 genes were significantly differentially expressed between the ileum of probiotic-fed and control birds. The expression of genes encoding pyruvate kinase, prothymosin-α, and heat stress proteins was high in the ileum of probiotic-fed birds (FPKM > 500), but not in the control group. The gene ontology functional enrichment and pathway enrichment analyses revealed that the uniquely expressed genes in the control group were mostly involved in immune responses, whereas those in the probiotic group were involved in fibroblast growth factor receptor signaling pathways and positive regulation of cell proliferation. Bacillus amyloliquefaciens TL downregulated the expression of certain proinflammatory factors and affected the cytokine-cytokine receptor interaction pathway. Furthermore, B. amyloliquefaciens TL in broiler diets altered the expression of genes involved in immune functions in the ileum. Thus, it might contribute to improved broiler growth by regulating the immune system and reducing intestinal damage in broilers.

10.
Front Microbiol ; 11: 1311, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714292

RESUMO

Ruminant methane, which is generated by methanogens through the consumption of hydrogen and supports the normal function of the rumen ecosystem, is a major source of greenhouse gases. Reductive acetogenesis by acetogens is a possible alternative sink that can dispose of hydrogen for acetate production. However, the distribution of rumen methanogens and acetogens along with the relationships among methanogens, acetogens, and their host are poorly understood. Therefore, we investigated the rumen methanogen and acetogen communities of 97 individual animals representing 14 ruminant species within three ruminant families Cervidae (deer), Bovidae (bovid), and Moschidae (musk deer). The results showed that the Methanobrevibacter spp. and acetogens associated with Eubacteriaceae were the most widespread methanogens and acetogens, respectively. However, other methanogens and acetogens exhibited host specificity in the rumen of reindeer and Chinese muntjac deer. Acetogen and methanogen communities were not correlated in these species, and the phylosymbiosis signature between host phylogeny and the composition of both communities was lacking. The abundance of Methanobrevibacter gottschalkii was negatively correlated with the degree of papillation of the rumen wall. Finally, co-occurrence analysis showed that the variation of the predicted methane yields was characterized by the interactive patterns between methanogens, acetogens, and concentrations of rumen metabolites. Our results show that rumen methanogen and acetogen communities have low compositional interdependence and do not exhibit parallel host evolution, which suggests that the strategies for mitigating methane production should be based on a species-specific rumen microbiota analysis.

11.
FASEB J ; 33(11): 12588-12601, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31480864

RESUMO

Because of climate change, heat stress (HS) causes more and more impacts on dairy animals to decrease lactation performance. The neuroendocrine system is key in regulating systemic physiological processes and milk synthesis. However, the hypothalamic-pituitary axis response to HS is still unclear. In this study, a group of lactating mice underwent a daily 2-h heat treatment (36°C) for 14 d to explore possible cross-talk between the hypothalamic-pituitary axis and mammary gland under HS. Transcriptome analyses by multitissue RNA-Seq indicated the possible mechanisms of reduced lactation performance in animals under HS. In the hypothalamus, the cAMP signaling pathway was activated to resist neuronal death, and the expression of downstream genes was increased to promote cell survival under HS. Reduced food intake might be caused by down-regulated appetite-related peptide, whereas up-regulated neuropeptide Y acted to attenuate reduced food intake. In pituitary, energy stress from lower food intake might result in reduced secretion of prolactin and growth hormone. Under HS, the mammary gland may undergo hypoxic stress, causing mammary epithelial cell apoptosis. Together, these data showed systemic changes in tissues to accommodate the effects of HS on lactation.-Han, J., Shao, J., Chen, Q., Sun, H., Guan, L., Li, Y., Liu, J., Liu, H. Transcriptional changes in the hypothalamus, pituitary, and mammary gland underlying decreased lactation performance in mice under heat stress.


Assuntos
Resposta ao Choque Térmico , Hipotálamo/metabolismo , Lactação , Glândulas Mamárias Animais/metabolismo , Hipófise/metabolismo , Transcrição Gênica , Animais , AMP Cíclico/metabolismo , Feminino , Camundongos , Sistemas do Segundo Mensageiro
12.
Animals (Basel) ; 9(5)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083376

RESUMO

It is well known that serum biochemical parameters and hormones contribute greatly to the physiological and metabolic status of dairy cows. However, few studies have focused on the variation of these serum parameters in multiparous mid-lactation cows without the interference of diet and management. A total of 287 Holstein dairy cows fed the same diet and maintained under the same management regime were selected from a commercial dairy farm to evaluate the effects of days-in-milk (DIM) and parity on serum biochemical parameters and hormone profiles. Milk yield and milk protein content were affected by DIM and parity (p < 0.05). Milk protein yield showed a numerically decreasing trend with parity, and it was relatively constant in cows with parities between 2 and 4 but lower in cows with parity 6 (p = 0.020). Ten and five serum biochemical parameters related to protein status, energy metabolism, liver and kidney function, and oxidative stress were affected by DIM and parity, respectively (p < 0.05). Glucagon, insulin-like growth factor 1 concentration, and the revised quantitative insulin sensitivity check index were significantly different (p < 0.05) among cows with different DIM. Parity had no effect on hormone concentrations. An interaction between DIM and parity effect was only detected for glucagon concentration (p = 0.015), which showed a significantly increasing trend with DIM and overall decreasing trend with parity. In summary, DIM and parity played an important role in affecting the serum biochemical parameters and/or hormones of dairy cows, with serum parameters affected more by DIM than parity.

13.
Front Microbiol ; 9: 2161, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319557

RESUMO

The rumen is a complex ecosystem composed of anaerobic bacteria, protozoa, fungi, methanogenic archaea and phages. These microbes interact closely to breakdown plant material that cannot be digested by humans, whilst providing metabolic energy to the host and, in the case of archaea, producing methane. Consequently, ruminants produce meat and milk, which are rich in high-quality protein, vitamins and minerals, and therefore contribute to food security. As the world population is predicted to reach approximately 9.7 billion by 2050, an increase in ruminant production to satisfy global protein demand is necessary, despite limited land availability, and whilst ensuring environmental impact is minimized. Although challenging, these goals can be met, but depend on our understanding of the rumen microbiome. Attempts to manipulate the rumen microbiome to benefit global agricultural challenges have been ongoing for decades with limited success, mostly due to the lack of a detailed understanding of this microbiome and our limited ability to culture most of these microbes outside the rumen. The potential to manipulate the rumen microbiome and meet global livestock challenges through animal breeding and introduction of dietary interventions during early life have recently emerged as promising new technologies. Our inability to phenotype ruminants in a high-throughput manner has also hampered progress, although the recent increase in "omic" data may allow further development of mathematical models and rumen microbial gene biomarkers as proxies. Advances in computational tools, high-throughput sequencing technologies and cultivation-independent "omics" approaches continue to revolutionize our understanding of the rumen microbiome. This will ultimately provide the knowledge framework needed to solve current and future ruminant livestock challenges.

14.
Front Microbiol ; 9: 4, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29410651

RESUMO

The dense and diverse community of microorganisms inhabiting the gastrointestinal tract of ruminant animals plays critical roles in the metabolism and absorption of nutrients, and gut associated immune function. Understanding microbial colonization in the small intestine of new born ruminants is a vital first step toward manipulating gut function through interventions during early life to produce long-term positive effects on host productivity and health. Yet the knowledge of microbiota colonization and its induced metabolites of small intestine during early life is still limited. In the present study, we examined the microbiota and metabolome in the jejunum and ileum of neonatal sika deer (Cervus nippon) from birth to weaning at days 1, 42, and 70. The microbial data showed that diversity and richness were increased with age, but a highly individual variation was observed at day 1. Principal coordinate analysis revealed significant differences in microbial community composition across three time points in the jejunum and ileum. The abundance of Halomonas spp., Lactobacillus spp., Escherichia-Shigella, and Bacteroides spp. tended to be decreased, while the proportion of Intestinibacter spp., Cellulosilyticum spp., Turicibacter spp., Clostridium sensu stricto 1 and Romboutsia spp. was significantly increased with age. For metabolome, metabolites separated from each other across the three time points in both jejunum and ileum. Moreover, the amounts of methionine, threonine, and putrescine were increased, while the amounts of myristic acid and pentadecanoic acid were decreased with age, respectively. The present study demonstrated that microbiota colonization and the metabolome becomes more developed in the small intestine with age. This may shed new light on the microbiota-metabolome-immune interaction during development.

15.
Anim Sci J ; 89(1): 122-131, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28944530

RESUMO

To better understand rumen adaptation during dietary transitions between high- and low-quality forages, 10 rumen-cannulated Hu sheep were randomly allocated to two dietary treatments (five sheep each) with the same concentrate-to-forage ratio and concentration mixture, but different forage sequences: (i) alfalfa hay (AH) to corn stover (CS) and back to AH; and (ii) CS to AH and back to CS. A significant decrease in the rumen microbial protein concentration was observed on day 6 after dietary transition whether the transition was from AH to CS or from CS to AH, and this was accompanied by an increase in the ammonia nitrogen concentration as well as a decrease in the total volatile fatty acids concentration and pH. However, after transitioning back to the original forage, the rumen fermentation parameters returned to their initial levels within 2 weeks. Our findings suggest that abrupt substitutions of forages with large nutrient differences could influence rumen function to some extent, but recovery can occur within 2 weeks without detrimental effects. Furthermore, we speculate that the variation of fermentation in the first 6 days may indicate an important rumen transition stage that requires further study.


Assuntos
Adaptação Fisiológica , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Dieta/veterinária , Fermentação , Qualidade dos Alimentos , Rúmen/metabolismo , Rúmen/fisiologia , Ovinos/metabolismo , Amônia/metabolismo , Animais , Ácidos Graxos Voláteis/metabolismo , Concentração de Íons de Hidrogênio , Nitrogênio/metabolismo , Fatores de Tempo
16.
PLoS One ; 12(8): e0183576, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28832677

RESUMO

BACKGROUND: This study aimed to assess whether feeding a diet containing fish oil was efficacious in reducing tumor- and subsequent chemotherapy-associated myosteatosis, and improving tumor response to treatment. METHODS: Female Fischer 344 rats were fed either a control diet for the entire study (control), or switched to a diet containing fish oil (2.0 g /100 g of diet) one week prior to tumor implantation (long term fish oil) or at the start of chemotherapy (adjuvant fish oil). Chemotherapy (irinotecan plus 5-fluorouracil) was initiated 2 weeks after tumor implantation (cycle-1) and 1 week thereafter (cycle-2). Reference animals received no tumor or treatment and only consumed the control diet. All skeletal muscle measures were conducted in the gastrocnemius. To assess myosteatosis, lipids were assessed histologically by Oil Red O staining and total triglyceride content was quantified by gas chromatography. Expression of adipogenic transcription factors were assessed at the mRNA level by real-time RT-PCR. RESULTS: Feeding a diet containing fish oil significantly reduced tumor- and subsequent chemotherapy-associated increases in skeletal muscle neutral lipid (p<0.001) and total triglyceride content (p<0.03), and expression of adipogenic transcription factors (p<0.01) compared with control diet fed animals. The adjuvant fish oil diet was as effective as the long term fish oil diet in mitigating chemotherapy-associated skeletal muscle fat content, and in reducing tumor volume during chemotherapy compared with control fed animals (p<0.01). CONCLUSION: Long term and adjuvant fish oil diets are equally efficacious in reducing chemotherapy-associated myosteatosis that may be occurring by reducing expression of transcription factors involved in adipogenesis/lipogenesis, and improving tumor-response to chemotherapy in a neoplastic model.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Modelos Animais de Doenças , Óleos de Peixe/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Antineoplásicos/efeitos adversos , Dieta , Sinergismo Farmacológico , Comportamento Alimentar , Feminino , Óleos de Peixe/farmacologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Ratos , Ratos Endogâmicos F344 , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/metabolismo
17.
BMC Genomics ; 18(1): 353, 2017 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-28477620

RESUMO

BACKGROUND: Rumen epithelial tissue plays an important role in nutrient absorption and rumen health. However, whether forage quality and particle size impact the rumen epithelial morphology is unclear. The current study was conducted to elucidate the effects of forage quality and forage particle size on rumen epithelial morphology and to identify potential underlying molecular mechanisms by analyzing the transcriptome of the rumen epithelium (RE). To achieve these objectives, 18 mid-lactation dairy cows were allocated to three groups (6 cows per group), and were fed with one of three different forage-based diets, alfalfa hay (AH), corn stover (CS), and rice straw (RS) for 14 weeks, respectively. Ruminal volatile fatty acids (VFAs) and epithelial thickness were determined, and RNA-sequencing was conducted to identify the transcriptomic changes of rumen epithelial under different forage-based diets. RESULTS: The RS diet exhibited greater particle size but low quality, the AH diet was high nutritional value but small particle size, and CS diet was low quality and small particle size. The ruminal total VFA concentration was greater in AH compared with those in CS or RS. The width of the rumen papillae was greater in RS-fed cows than in cows fed AH or CS. In total, 31, 40, and 28 differentially expressed (DE, fold change > 2, FDR < 0.05) genes were identified via pair-wise comparisons including AH vs. CS, AH vs. RS, and RS vs. CS, respectively. Functional classification analysis of DE genes revealed dynamic changes in ion binding (such as DSG1) between AH and CS, proliferation and apoptotic processes (such as BAG3, HLA-DQA1, and UGT2B17) and complement activation (such as C7) between AH or RS and CS. The expression of HLA-DQA1 was down-regulated in RS compared with AH and CS, and the expression of UGT2B17 was down-regulated in RS compared with CS, with positive (R = 0.94) and negative (R = -0.96) correlation with the width of rumen epithelial papillae (P < 0.05), respectively. CONCLUSION: Our results suggest that both nutrients (VFAs) and particle sizes can alter expression of genes involved in cell proliferation/apoptosis process and complement complex. Our results suggest that particle size may be more important in regulating rumen epithelial morphology when animals are fed with low-quality forage diets and the identified DE genes may affect the RE nutrient absorption or morphology of RE. Our findings provide insights into the effects of the dietary particle size in the future management of dairy cow feeding, that when cows were fed with low-quality forage (such as rice straw), smaller particle size may be beneficial for nutrients absorption and milk production.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Indústria de Laticínios , Dieta , Lactação/genética , Rúmen/citologia , Rúmen/metabolismo , Transcriptoma/fisiologia , Ração Animal , Animais , Bovinos , Células Epiteliais/metabolismo , Fenótipo
18.
PLoS One ; 11(6): e0156835, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27299526

RESUMO

A series of batch cultures were conducted to investigate the effects of oleic acid (OA) on in vitro ruminal dry matter degradability (IVDMD), gas production, methane (CH4) and hydrogen (H2) production, and proportion of fatty acids. Rumen fluid was collected from fistulated goats, diluted with incubation buffer, and then incubated with 500 mg Leymus chinensis meal supplemented with different amounts of OA (0, 20, 40, and 60 mg for the CON, OA20, OA40 and OA60 groups, respectively). Incubation was carried out anaerobically at 39°C for 48 h, and the samples were taken at 12, 24 and 48 h and subjected to laboratory analysis. Supplementation of OA decreased IVDMD, the cumulative gas production, theoretical maximum of gas production and CH4 production, but increased H2 production. However, no effect was observed on any parameters of rumen fermentation (pH, ammonia, production of acetate, propionate and butyrate and total volatile fatty acid production). The concentrations of some beneficial fatty acids, such as cis monounsaturated fatty acids and conjugated linoleic acid (CLA) were higher (P < 0.05) from OA groups than those from the control group at 12 h incubation. In summary, these results suggest that the OA supplementation in diet can reduce methane production and increase the amount of some beneficial fatty acids in vitro.


Assuntos
Ácidos Graxos/metabolismo , Fermentação , Cabras/fisiologia , Ácido Oleico/metabolismo , Rúmen/fisiologia , Acetatos/metabolismo , Amônia/metabolismo , Ração Animal/análise , Animais , Suplementos Nutricionais/análise , Ácidos Graxos Voláteis/metabolismo , Hidrogênio/metabolismo , Metano/metabolismo , Propionatos/metabolismo
19.
BMC Genomics ; 17: 196, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26951612

RESUMO

BACKGROUND: A region on Sus scrofa chromosome 4 (SSC4) surrounding single nucleotide polymorphism (SNP) marker WUR10000125 (WUR) has been reported to be strongly associated with both weight gain and serum viremia in pigs after infection with PRRS virus (PRRSV). A proposed causal mutation in the guanylate binding protein 5 gene (GBP5) is predicted to truncate the encoded protein. To investigate transcriptional differences between WUR genotypes in early host response to PRRSV infection, an RNA-seq experiment was performed on globin depleted whole blood RNA collected on 0, 4, 7, 10 and 14 days post-infection (dpi) from eight littermate pairs with one AB (favorable) and one AA (unfavorable) WUR genotype animal per litter. RESULTS: Gene Ontology (GO) enrichment analysis of transcripts that were differentially expressed (DE) between dpi across both genotypes revealed an inflammatory response for all dpi when compared to day 0. However, at the early time points of 4 and 7dpi, several GO terms had higher enrichment scores compared to later dpi, including inflammatory response (p < 10(-7)), specifically regulation of NFkappaB (p < 0.01), cytokine, and chemokine activity (p < 0.01). At 10 and 14dpi, GO term enrichment indicated a switch to DNA damage response, cell cycle checkpoints, and DNA replication. Few transcripts were DE between WUR genotypes on individual dpi or averaged over all dpi, and little enrichment of any GO term was found. However, there were differences in expression patterns over time between AA and AB animals, which was confirmed by genotype-specific expression patterns of several modules that were identified in weighted gene co-expression network analyses (WGCNA). Minor differences between AA and AB animals were observed in immune response and DNA damage response (p = 0.64 and p = 0.11, respectively), but a significant effect between genotypes pointed to a difference in ion transport/homeostasis and the participation of G-coupled protein receptors (p = 8e-4), which was reinforced by results from regulatory and phenotypic impact factor analyses between genotypes. CONCLUSION: We propose these pathway differences between WUR genotypes are the result of the inability of the truncated GBP5 of the AA genotyped pigs to inhibit viral entry and replication as quickly as the intact GBP5 protein of the AB genotyped pigs.


Assuntos
Proteínas de Ligação ao GTP/genética , Polimorfismo de Nucleotídeo Único , Síndrome Respiratória e Reprodutiva Suína/genética , Sus scrofa/genética , Animais , Quimiocinas/imunologia , Biologia Computacional , Citocinas/imunologia , Dano ao DNA , Genótipo , Inflamassomos/imunologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína , Análise de Sequência de RNA , Sus scrofa/imunologia , Sus scrofa/virologia , Suínos , Transcriptoma , Viremia/genética , Viremia/imunologia
20.
J Nutr ; 146(3): 474-83, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26843585

RESUMO

BACKGROUND: A high-protein diet (HPD) can produce hazardous compounds and reduce butyrate-producing bacteria in feces, which may be detrimental to gut health. However, information on whether HPD affects intestinal function is limited. OBJECTIVE: The aim of this study was to determine the impact of an HPD on the microbiota, microbial metabolites, and epithelial transcriptome in the colons of rats. METHODS: Adult male Wistar rats were fed either a normal-protein diet (20% protein, 56% carbohydrate) or an HPD (45% protein, 30% carbohydrate) for 6 wk (n = 10 rats per group, individually fed). After 6 wk, the colonic microbiome, microbial metabolites, and epithelial transcriptome were determined. RESULTS: Compared with the normal-protein diet, the HPD adversely altered the colonic microbiota by increasing (P < 0.05) Escherichia/Shigella, Enterococcus, Streptococcus, and sulfate-reducing bacteria by 54.9-fold, 31.3-fold, 5.36-fold, and 2.59-fold, respectively. However, the HPD reduced Ruminococcus (8.04-fold), Akkermansia (not detected in HPD group), and Faecalibacterium prausnitzii (3.5-fold) (P < 0.05), which are generally regarded as beneficial bacteria in the colon. Concomitant increases in cadaverine (4.88-fold), spermine (31.2-fold), and sulfide (4.8-fold) (P < 0.05) and a decrease in butyrate (2.16-fold) (P < 0.05) in the HPD rats indicated an evident shift toward the production of unhealthy microbial metabolites. In the colon epithelium of the HPD rats, transcriptome analysis identified an upregulation of genes (P < 0.05) involved in disease pathogenesis; these genes are involved in chemotaxis, the tumor necrosis factor signal process, and apoptosis. The HPD was also associated with a downregulation of many genes (P < 0.05) involved in immunoprotection, such as genes involved in innate immunity, O-linked glycosylation of mucin, and oxidative phosphorylation, suggesting there may be an increased disease risk in these rats. The abundance of Escherichia/Shigella, Enterococcus, and Streptococcus was positively correlated (Spearman's ρ > 0.7, P < 0.05) with genes and metabolites generally regarded as being involved in disease pathogenesis, suggesting these bacteria may mediate the detrimental effects of HPDs on colonic health. CONCLUSION: Our findings suggest that the HPD altered the colonic microbial community, shifted the metabolic profile, and affected the host response in the colons of rats toward an increased risk of colonic disease.


Assuntos
Dieta , Proteínas Alimentares/administração & dosagem , Microbioma Gastrointestinal , Transcriptoma , Animais , DNA Bacteriano/isolamento & purificação , Regulação para Baixo , Enterococcus/isolamento & purificação , Escherichia/isolamento & purificação , Fezes/microbiologia , Perfilação da Expressão Gênica , Masculino , Mucinas/metabolismo , RNA Ribossômico 16S/isolamento & purificação , Ratos , Ratos Wistar , Ruminococcus/isolamento & purificação , Shigella/isolamento & purificação , Streptococcus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...