Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Colloids Surf B Biointerfaces ; 234: 113731, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184944

RESUMO

Cytokine storms characterized by excessive secretion of circulating cytokines and immune-cell hyperactivation are life-threatening systemic inflammatory syndromes. The new strategy is in great demand to inhibit the cytokine storm. Here, we designed a type of magnetically controlled nanorobots (MAGICIAN) by fusing neutrophil membranes onto Fe3O4 nanoparticles (Fe3O4NPs). In our study, the receptors of neutrophil membranes were successfully coated to the surface of Fe3O4NPs. The associated membrane functions of neutrophils were highly preserved. MAGICIAN could in vitro neutralize the inflammatory cytokines including interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and interferon γ (IFN-γ). Interestingly, MAGICIAN could be navigated to the liver sites under magnetic control and accelerated the cytokine clearance by the liver. Administration of MAGICIAN could efficiently relieve the inflammation in the acute lung injury mouse model. In addition, MAGICIAN displayed good biosafety in systemic administration. The present study provides a safe and convenient approach for the clearance of cytokine storms, indicating the potential for clinical application in acute lung injury therapy.


Assuntos
Lesão Pulmonar Aguda , Síndrome da Liberação de Citocina , Camundongos , Animais , Citocinas , Fator de Necrose Tumoral alfa , Lesão Pulmonar Aguda/tratamento farmacológico , Interferon gama
2.
Sci Total Environ ; 913: 169655, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38159767

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) and their halogenated derivatives (HPAHs) can be unintentionally formed and released during industrial thermal processes. However, information on internal exposure and health risks of PAHs and HPAHs for thermal industry workers is very limited. In this study, serum samples from 220 aluminum smelter workers in East China were analyzed, and the relationship between the levels of these pollutants and various health indicators was also assessed. The workers had markedly higher serum concentrations of PAHs and HPAHs than the controls. The serum concentrations of ∑13PAHs and ∑9HPAHs increased with increasing age and occupational exposure duration in male workers. A positive correlation was observed between the ∑13PAH and ∑9HPAH serum concentrations, and the concentration of ∑13PAHs was approximately 50 times higher than that of ∑9HPAHs. For benzo[a]pyrene equivalent (BaPeq)-based risk assessment, the contribution of PAHs and HPAHs to the risk was 80 % and 20 % in the workers. PAHs and HPAHs showed a positive association with pulmonary hypofunction, hypertension and abnormal electrocardiogram. This study indicates occupational exposure to these toxic pollutants remains a significant issue and provides evidence that elevated serum levels of ∑13PAHs and ∑9HPAHs may be associated with an increased risk of lung and cardiovascular diseases.


Assuntos
Poluentes Ambientais , Exposição Ocupacional , Hidrocarbonetos Policíclicos Aromáticos , Masculino , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Alumínio , Exposição Ocupacional/análise , China
3.
Int J Nanomedicine ; 18: 7785-7801, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144512

RESUMO

Background: High-level low-density lipoprotein cholesterol (LDL-C) plays a vital role in the development of atherosclerotic cardiovascular disease. Low-density lipoprotein receptors (LDLRs) are scavengers that bind to LDL-C in the liver. LDLR proteins are regulated by proprotein convertase subtilisin/kexin type 9 (PCSK9), which mediates the degradation of LDLR and adjusts the level of the plasma LDL-C. The low expression of PCSK9 leads to the up-regulation of liver LDLRs and the reduction of plasma LDL-C. Hepatocytes are attractive targets for small interfering RNA (siRNA) delivery to silence Pcsk9 gene, due to their significant role in LDL-C regulation. Methods: Here, a type of liver-specific ionizable lipid nanoparticles is developed for efficient siRNA delivery. This type of nanoparticles shows high stability, enabling efficient cargo delivery specifically to hepatocytes, and a membrane-active polymer that reversibly masks activity until an acidic environment is reached. Results: Significantly, the siPcsk9 (siRNA targeting to Pcsk9)-loaded nanoparticles (GLP) could silence 90% of the Pcsk9 mRNA in vitro. In vivo study showed that the improved accumulation of GLP in the liver increased LDLR level by 3.35-fold and decreased plasma LDL-C by 35%. Conclusion: GLP has shown a powerful effect on reducing LDL-C, thus providing a potential therapy for atherosclerotic cardiovascular disease.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Nanopartículas , Humanos , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , LDL-Colesterol/genética , LDL-Colesterol/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Interferência de RNA , Doenças Cardiovasculares/metabolismo , Fígado/metabolismo , Colesterol , Receptores de LDL/genética , Receptores de LDL/metabolismo , Aterosclerose/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
4.
Chemistry ; 29(67): e202302672, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37695132

RESUMO

Achieving a planar hypercoordinate arrangement of s-block metals through covalent bonding with ligands is challenging due to the strong ionicity involved. Herein, we report the first case of a neutral binary global minimum containing a planar hexacoordinate beryllium atom. The central Be atom is coordinated by six active Be atoms, the latter in turn are enclosed by an equal number of more electronegative chlorine atoms in the periphery, forming a star-like phBe cluster (Be©Be6 Cl6 ). Importantly, the cluster exhibits dynamically stabilized stemming geometrically from the appropriate matching of metal-ligand size and electronically from adherence to the octet rule as well as possessing a 6σ/2π double aromaticity. Remarkably, energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV) analysis reveals a significant covalent interaction between the ligand and the central metal beryllium atoms, a fact further supported by a large Wiberg bond index. This cluster is a promising synthetic as its excellent electronic, dynamic and thermodynamic stability.

5.
Acta Pharmacol Sin ; 44(10): 1962-1976, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37169852

RESUMO

Atherosclerosis is a major cause of death and disability in cardiovascular disease. Atherosclerosis associated with lipid accumulation and chronic inflammation leads to plaques formation in arterial walls and luminal stenosis in carotid arteries. Current approaches such as surgery or treatment with statins encounter big challenges in curing atherosclerosis plaque. The infiltration of proinflammatory M1 macrophages plays an essential role in the occurrence and development of atherosclerosis plaque. A recent study shows that TRIM24, an E3 ubiquitin ligase of a Trim family protein, acts as a valve to inhibit the polarization of anti-inflammatory M2 macrophages, and elimination of TRIM24 opens an avenue to achieve the M2 polarization. Proteolysis-targeting chimera (PROTAC) technology has emerged as a novel tool for the selective degradation of targeting proteins. But the low bioavailability and cell specificity of PROTAC reagents hinder their applications in treating atherosclerosis plaque. In this study we constructed a type of bioinspired PROTAC by coating the PROTAC degrader (dTRIM24)-loaded PLGA nanoparticles with M2 macrophage membrane (MELT) for atherosclerosis treatment. MELT was characterized by morphology, size, and stability. MELT displayed enhanced specificity to M1 macrophages as well as acidic-responsive release of dTRIM24. After intravenous administration, MELT showed significantly improved accumulation in atherosclerotic plaque of high fat and high cholesterol diet-fed atherosclerotic (ApoE-/-) mice through binding to M1 macrophages and inducing effective and precise TRIM24 degradation, thus resulting in the polarization of M2 macrophages, which led to great reduction of plaque formation. These results suggest that MELT can be considered a potential therapeutic agent for targeting atherosclerotic plaque and alleviating atherosclerosis progression, providing an effective strategy for targeted atherosclerosis therapy.


Assuntos
Aterosclerose , Placa Aterosclerótica , Quimera de Direcionamento de Proteólise , Animais , Camundongos , Anti-Inflamatórios/uso terapêutico , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Inflamação/tratamento farmacológico , Macrófagos , Camundongos Endogâmicos C57BL , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo , Quimera de Direcionamento de Proteólise/farmacologia , Quimera de Direcionamento de Proteólise/uso terapêutico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Nanopartículas/uso terapêutico
6.
J Comput Chem ; 44(15): 1410-1417, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36872591

RESUMO

In designing three-dimensional (3-D) molecular stars, it is very difficult to enhance the molecular rigidity through forming the covalent bonds between the axial and equatorial groups because corresponding axial groups will generally break the delocalized π bond over equatorial frameworks and thus break their star-like arrangement. In this work, exemplified by designing the 3-D stars Be2 ©Be5 E5 + (E = Au, Cl, Br, I) with three delocalized σ bonds and delocalized π bond over the central Be2 ©Be5 moiety, we propose that the desired covalent bonding can be achieved by forming the delocalized σ bond(s) and delocalized π bond(s) simultaneously between the axial groups and equatorial framework. The covalency and rigidity of axial bonding can be demonstrated by the total Wiberg bond indices of 1.46-1.65 for axial Be atoms and ultrashort Be-Be distances of 1.834-1.841 Å, respectively. Beneficial also from the σ and π double aromaticity, these mono-cationic 3-D molecular stars are dynamically viable global energy minima with well-defined electronic structures, as reflected by wide HOMO-LUMO gaps (4.68-5.06 eV) and low electron affinities (4.70-4.82 eV), so they are the promising targets in the gas phase generation, mass-separation, and spectroscopic characterization.

7.
J Nanobiotechnology ; 21(1): 49, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759822

RESUMO

Aggregation-induced emission luminogens (AIEgens) have emerged as novel phototherapeutic agents with high photostability and excellent performance to induce photodynamic and/or photothermal effects. In this study, a zwitterion-type NIR AIEgens C41H37N2O3S2 (named BITT) with biomimetic modification was utilized for lung cancer therapy. The tumor-associated macrophage (TAM)-specific peptide (CRV) was engineered into the lung cancer cell-derived exosomes. The CRV-engineered exosome membranes (CRV-EM) were obtained to camouflage the BITT nanoparticles (CEB), which targeted both lung cancer cells and TAMs through homotypic targeting and TAM-specific peptide, respectively. The camouflage with CRV-EM ameliorated the surface function of BITT nanoparticles, which facilitated the cellular uptake in both cell lines and induced significant cell death in the presence of laser irradiations in vitro and in vivo. CEB showed improved circulation lifetime and accumulations in the tumor tissues in vivo, which induced efficient photodynamic and photothermal therapy. In addition, CEB induced the tumor microenvironment remodeling as indicated by the increase of CD8 + and CD4 + T cells, as well as a decrease of M2 TAM and Myeloid-derived suppressor cells (MDSCs). Our work developed a novel style of bioinspired AIE aggregates, which could eliminate both lung cancer cells and TAMs, and remodel the tumor environments to achieve an efficient lung cancer therapy. To the best of our knowledge, we are the first to use this style of bioinspired AIE aggregates for photo-mediated immunotherapy in lung cancer therapy.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Humanos , Neoplasias Pulmonares/terapia , Imunoterapia , Peptídeos , Microambiente Tumoral
8.
Sci Total Environ ; 871: 162107, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764545

RESUMO

The alternative flame retardants, novel brominated flame retardants (NBFRs) and organophosphate flame retardants (OPFRs) are ubiquitous in the environment and biota and may induce endocrine disruption effects. Associations between traditional endocrine-disrupting chemicals and type 2 diabetes have been extensively reported in epidemiological studies. However, the effects of NBFRs and OPFRs in humans have not been reported to date. This paper reports a case-control study of 344 participants aged 25-80 years from Shandong Province, East China, where potential associations between serum NBFR and OPFR concentrations and type 2 diabetes are assessed for the first time. After adjusting for covariates (i.e., age, sex, body mass index, smoking status, alcohol consumption, triglycerides, and total cholesterol), serum concentrations of pentabromotoluene, 2,3-dibromopropyl 2,4,6-tribromophenyl ether, tri-n-propyl phosphate, triphenyl phosphate, and tris (2-ethylhexyl) phosphate were significantly positively associated with type 2 diabetes. In the control group, decabromodiphenyl ethane and triphenyl phosphate were significantly positively associated with fasting plasma glucose, triglycerides, and high-density lipoprotein cholesterol. In the quantile g-computation model, significant positive mixture effect was found between the flame retardants mixtures and high-density lipoprotein cholesterol levels, and decabromodiphenyl ethane contributed the largest positive weights to the mixture effect. Overall, these findings suggest that exposure to NBFRs and OPFRs may promote type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Retardadores de Chama , Humanos , Monitoramento Ambiental , Retardadores de Chama/análise , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/epidemiologia , Éteres Difenil Halogenados/análise , Organofosfatos , China/epidemiologia , Fosfatos , Lipoproteínas HDL , Colesterol
9.
Angew Chem Int Ed Engl ; 62(11): e202217089, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36658634

RESUMO

The reprogramming of tumor-associated macrophages (TAMs) has emerged as an efficient strategy for immunotherapy. However, most of the approaches did not allow the in situ reprogramming of TAM because their low efficiency, non-specificity, or potential side effects. Herein, we produced exosomes with the clustered regularly interspaced short palindromic repeats interference (CRISPRi) internally engineered and the TAM specific peptide externally engineered onto the exosome membrane. The internally and externally engineered exosomes (IEEE, also named as I3E) allowed the selective homing to tumor tissue and targeted to M2-like TAMs, which nearly repressed the expression of PI-3 kinase gamma (PI3Kγ) completely, and induced the TAMs polarizing to M1 both in vitro and in vivo. The polarized M1 macrophages awakened the "hot" tumor-immunity, causing the increase of T lymphocyte infiltration and the decrease of myeloid-derived suppressor cells, and inhibiting the tumor growth significantly. I3E reprogramed TAMs in situ precisely and efficiently.


Assuntos
Exossomos , Neoplasias , Humanos , Macrófagos Associados a Tumor , Exossomos/metabolismo , Macrófagos/metabolismo , Neoplasias/patologia , Microambiente Tumoral , Linhagem Celular Tumoral
10.
J Orthop Translat ; 38: 117-125, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36381249

RESUMO

Objectives: This study assessed the efficacy, safety, pharmacokinetics (PK), and immunogenicity profiles of a denosumab biosimilar (LY06006) in Chinese postmenopausal osteoporotic women with a high risk of fracture. Methods: In this multicenter, randomized, double-blind, placebo-controlled, phase 3 trial, 448 postmenopausal women aged 50-85 years with osteoporosis were enrolled at 49 centers in China and were randomly assigned (3:1) to receive 60 â€‹mg of the denosumab biosimilar (LY06006) or placebo subcutaneously every 6 months for 1 year. Lumbar spine bone mineral density (BMD) change was the primary endpoint. Results: Of the 448 randomized patients, 409 (LY06006, n â€‹= â€‹311; placebo, n â€‹= â€‹98) completed the study. All 448 (100.0%) subjects were included in the intent-to-treat (ITT) trial, 427 (95.3%) were included in the full analysis set (FAS), 408 (91.1%) were included in the per protocol set (PPS), 446 (99.6%) were included in the safety set (SS), and 336 (75.0%) were included in the pharmacokinetics concentration set (PKCs). For the primary endpoint, a 4.71% (95% CI, 3.81%, 5.60%) treatment difference in percent change in lumbar spine BMD from baseline to month 12 was observed in the LY06006 group compared with the placebo group (P â€‹< â€‹0.0001). For the secondary endpoints, LY06006 was associated with increased lumbar spine BMD levels measured at month 6, BMD levels at the femoral neck, total hip, and trochanter measured at months 6 and 12 and reduced serum C-terminal telopeptide of type 1 collagen (CTX) and procollagen type 1 â€‹N-peptide (P1NP) levels at months 1, 6, and 12. Safety analysis was based on the safety analysis set (SS), and 264 (78.6%) subjects in the LY06006 group and 83 (75.5%) in the placebo group experienced adverse events (AEs). Most events were mild or moderate and not related to the study drugs. Conclusion: In postmenopausal women with a high risk of fracture, LY06006 increased the BMD and decreased bone resorption; thus, LY06006 might be an effective treatment for osteoporosis. LY06006 was generally safe and well tolerated without unexpected adverse reactions, similar to the reference drug Prolia®. The characteristics of effectiveness and safety were similar to those reported in previous studies. The translational potential of this article: In this multi-center, randomized, double-blind, placebo-controlled phase 3 study, LY06006 showed substantially efficacy to increase BMD and well tolerance without unexpected adverse reactions, which is comparable to the reference drug Prolia ®. The presented results are encouraging and can offer some valuable evidence for the clinical practice.

11.
Int J Nanomedicine ; 18: 8001-8021, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38164266

RESUMO

Nucleic acids have emerged as promising therapeutic agents for many diseases because of their potential in modulating gene expression. However, the delivery of nucleic acids remains a significant challenge in gene therapy. Although viral vectors have shown high transfection efficiency, concerns regarding teratogenicity or carcinogenicity have been raised. Non-viral vehicles, including cationic polymers, liposomes, and inorganic materials possess advantages in terms of safety, ease of preparation, and low cost. Nevertheless, they also face limitations related to immunogenicity, quick clearance in vivo, and lack of targeting specificity. On the other hand, bioinspired strategies have shown increasing potential in the field of drug delivery, yet there is a lack of comprehensive reviews summarizing the rapid development of bioinspired nanoparticles based on the cell membrane camouflage to construct the nucleic acids vehicles. Herein, we enumerated the current difficulties in nucleic acid delivery with various non-viral vehicles and provided an overview of bioinspired strategies for nucleic acid delivery.


Assuntos
Nanopartículas , Ácidos Nucleicos , Transfecção , Lipossomos , Membrana Celular
12.
Environ Sci Technol ; 56(24): 17825-17835, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36468700

RESUMO

Novel brominated flame retardant (NBFR) and organophosphate ester (OPE) exposure may engender adverse effects on human health. However, present epidemiological information regarding the effects of such exposure is limited and controversial. In this case-control study, 481 serum samples were collected from patients with thyroid cancer (n = 242) and healthy controls (n = 239) in Shandong Province, eastern China. The levels of NBFRs and OPEs, thyroid hormones, and serum lipid parameters were measured in all the participants. Pentabromotoluene, 2,3-dibromopropyl 2,4,6 tribromophenyl ether, decabromodiphenylethane (DBDPE), tris (2-chloroethyl) phosphate (TCEP), and triphenyl phosphate (TPP) were widely detected (detection frequency > 60%) in all the participants. A significantly high risk association was found between exposure of NBFRs and OPEs (namely 1,2,3,4,5-pentabromobenzene, DBDPE, tri-n-propyl phosphate, tri[(2R)-1-chloro-2-propyl] phosphate, tris (1,3-dichloro-2-propyl) phosphate, and tris (2-butoxyethyl) phosphate) and thyroid cancer in both males and females. In the females of the control group, TCEP levels exhibited a significantly positive association with thyroid-stimulating hormone and a negative association with triiodothyronine (T3), free triiodothyronine (FT3), and free thyroxine (FT4) levels. Weighted quantile sum regression evaluated the mixed effects of the compounds on thyroid hormones levels and thyroid cancer. As a result, TPP accounted for the majority of the T3, thyroxine, and FT3 amounts. Our results suggest that NBFR and OPE exposure contributes to alterations in thyroid function, thereby increasing thyroid cancer risk.


Assuntos
Retardadores de Chama , Neoplasias da Glândula Tireoide , Feminino , Masculino , Humanos , Monitoramento Ambiental/métodos , Retardadores de Chama/análise , Tri-Iodotironina , Tiroxina , Estudos de Casos e Controles , Organofosfatos , China , Fosfatos , Ésteres
13.
J Fungi (Basel) ; 8(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36294597

RESUMO

Previous studies have shown that the high-osmolarity glycerol mitogen-activated protein kinase (HOG MAPK) signaling pathway and its downstream transcription factor CsAtf1 are involved in the regulation of fludioxonil sensitivity in C. siamense. However, the downstream target genes of CsAtf1 related to the fludioxonil stress response remain unclear. Here, we performed chromatin immunoprecipitation sequencing (ChIP-Seq) and high-throughput RNA-sequencing (RNA-Seq) to identify genome-wide potential CsAtf1 target genes. A total of 3809 significantly differentially expressed genes were predicted to be directly regulated by CsAtf1, including 24 cytochrome oxidase-related genes. Among them, a cytochrome P450-encoding gene, designated CsCyp51G1, was confirmed to be a target gene, and its transcriptional expression was negatively regulated by CsAtf1, as determined using an electrophoretic mobility shift assay (EMSA), a yeast one-hybrid (Y1H) assay, and quantitative real-time PCR (qRT-PCR). Moreover, the overexpression mutant CsCYP51G1 of C. siamense exhibited increased fludioxonil tolerance, and the CsCYP51G1 deletion mutant exhibited decreased fludioxonil resistance, which revealed that CsCyp51G1 is involved in fludioxonil sensitivity regulation in C. siamense. However, the cellular ergosterol content of the mutants was not consistent with the phenotype of fludioxonil sensitivity, which indicated that CsCyp51G1 regulates fludioxonil sensitivity by affecting factors other than the ergosterol level in C. siamense. In conclusion, our data indicate that the transcription factor CsAtf1 negatively regulates the cytochrome P450 gene CsCyp51G1 to increase fludioxonil sensitivity in C. siamense.

14.
J Fungi (Basel) ; 8(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36135702

RESUMO

Previous studies of the lipid droplet-coating protein Cap20 in Colletotrichum show that it plays a key role in appressorium development and virulence. In this study, the hydrophobin CsHydr1, which contains a signal peptide of 19 amino acids and a hydrophobic domain (HYDRO), was shown to interact with CsCap20 in Colletotrichum siamense. The CsHydr1 deletion mutant showed slightly enhanced mycelial growth, small conidia, slow spore germination and appressoria formation, cell wall integrity and virulence. Like CsCAP20, CsHydr1 is also localized on the lipid droplet surface of C. siamense. However, when CsCap20 was absent, some CsHydr1 was observed in other parts. Quantitative lipid determination showed that the absence of either CsHydr1 or CsCap20 reduced the content of lipids in mycelia and conidia, while the effect of CsCap20 was more obvious; these results suggest that an interaction protein CsHydr1 of CsCap20 is localized on the lipid droplet surface and involved in lipid metabolism, which affects appressorium formation and virulence in C. siamense.

15.
Front Cell Infect Microbiol ; 12: 801232, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223539

RESUMO

BACKGROUND: The host response to bacterial sepsis is reported to be nonspecific regardless of the causative pathogen. However, newer paradigms indicated that the host response of Gram-negative sepsis may be different from Gram-positive sepsis, and the difference has not been clearly clarified. The current study aimed to explore the difference by identifying the differential gene sets using the genome-wide technique. METHODS: The training dataset GSE6535 and the validation dataset GSE13015 were used for bioinformatics analysis. The distinct gene sets of sepsis with different infections were screened using gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA). The intersection gene sets based on the two algorithms were confirmed through Venn analysis. Finally, the common gene sets between GSE6535 and GSE13015 were determined by GSEA. RESULTS: Two immunological gene sets in GSE6535 were identified based on GSVA, which could be used to discriminate sepsis caused by Gram-positive, Gram-negative, or mixed infection. A total of 19 gene sets were obtained in GSE6535 through Venn analysis based on GSVA and GSEA, which revealed the heterogeneity of Gram-negative and Gram-positive sepsis at the molecular level. The result was also verified by analysis of the validation set GSE13015, and 40 common differential gene sets were identified between dataset GSE13015 and dataset GSE6535 by GSEA. CONCLUSIONS: The identified differential gene sets indicated that host response may differ dramatically depending on the inciting organism. The findings offer new insight to investigate the pathophysiology of bacterial sepsis.


Assuntos
Infecções por Bactérias Gram-Negativas , Infecções por Bactérias Gram-Positivas , Sepse , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Infecções por Bactérias Gram-Negativas/genética , Humanos , Sepse/genética
16.
Front Bioeng Biotechnol ; 9: 762956, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917596

RESUMO

Indocyanine green (ICG), a near-infrared (NIR) fluorescent dye approved by the Food and Drug Administration (FDA), has been extensively used as a photoacoustic (PA) probe for PA imaging. However, its practical application is limited by poor photostability in water, rapid body clearance, and non-specificity. Herein, we fabricated a novel biomimetic nanoprobe by coating ICG-loaded mesoporous silica nanoparticles with the cancer cell membrane (namely, CMI) for PA imaging. This probe exhibited good dispersion, large loading efficiency, good biocompatibility, and homologous targeting ability to Hela cells in vitro. Furthermore, the in vivo and ex vivo PA imaging on Hela tumor-bearing nude mice demonstrated that CMI could accumulate in tumor tissue and display a superior PA imaging efficacy compared with free ICG. All these results demonstrated that CMI might be a promising contrast agent for PA imaging of cervical carcinoma.

17.
Chem Commun (Camb) ; 57(47): 5806-5809, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33999984

RESUMO

We predicted the stable alkaline earth complexes M(Cp)3- (M = Ca, Sr, Ba; Cp = cyclopentadienyl), where the M centers were in their stable +2 oxidation state and mimicked the bonding behaviour of transition metals by participating in bonding with the π orbitals of Cp ligands using their d orbitals.

18.
Can J Physiol Pharmacol ; 99(8): 775-785, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33290156

RESUMO

Theobromine, a methylxanthine present in cocoa, has been shown to possess many beneficial pharmacological properties such as anti-oxidative stress, anti-inflammatory property, and anti-microbial activity. In this study, we investigated the effects of theobromine on nonalcoholic fatty liver disease (NAFLD) and the possible underlying mechanisms in vivo and in vitro. The results showed that theobromine reduced body weight and fat mass and improved dyslipidemia. Theobromine mitigated liver injury and significantly reduced hepatic triglyceride level in mice with obesity. Histological examinations also showed hepatic steatosis was alleviated after theobromine treatment. Furthermore, theobromine reversed the elevated mRNA and protein expression of SREBP-1c, FASN, CD36, FABP4, and the suppressed expression of PPARα and CPT1a in the liver of mice with obesity, which were responsible for lipogenesis, fatty acid uptake, and fatty acid oxidation respectively. In vitro, theobromine also downregulated SREBP-1c, FASN, CD36, FABP4 and upregulated PPARα and CPT1a mRNA and protein levels in hepatocytes in a dose-dependent manner, while these changes were reversed by L-leucine, a mammalian target of rapamycin (mTOR) agonist. The present study demonstrated that theobromine improved NAFLD by inhibiting lipogenesis and fatty acid uptake and promoting fatty acid oxidation in the liver and hepatocytes, which might be associated with its suppression of mTOR signaling pathway. Novelty: Theobromine protects against high-fat diet - induced NAFLD. Theobromine inhibits lipogenesis and fatty acid uptake and promotes fatty acid oxidation in the liver and hepatocytes via inhibiting mTOR signaling pathway.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Lipogênese , Masculino , Camundongos
19.
Phys Chem Chem Phys ; 22(30): 17062-17067, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32568316

RESUMO

Computational design has played an important role in planar hyper-coordinate carbon (phC) chemistry. However, none of numerous computationally predicted phC species were subsequently successfully synthesized in the condensed phase, perhaps due to the frustrating issue of oxidation. In the present work, we studied the influence of stepwise oxidation on the structure, stability, and properties of phC species using the milestone planar pentacoordinate carbon (ppC) species CAl5+ as an example. Our results indicated that the ppC structure of CAl5+ would be directly destroyed with one, two, or six O atom(s) per molecule present and indirectly with three or four O atoms, but maintained with five O atoms due to the ppC isomer of CAl5O5+ being a kinetically stable global energy minimum displaying σ and π double aromaticity. Moreover, the magnitudes of the first to fifth vertical oxygen affinities (VOAs) for CAl5+ were determined to be very high (-85.5 to -116.3 kcal mol-1), probably due to the existence of peripheral diffuse Al-Al bond(s). However, the sixth VOA was reduced significantly to -50.2 kcal mol-1, consistent with the absence of any diffuse Al-Al bond in the corresponding CAl5O5+ species. So CAl5O5+ may be insensitive to oxidation. Therefore, the ppC species D5h CAl5O5+ might be resistant to being degraded under a delicate control of oxidation level (producing five O atoms per CAl5+ molecule).

20.
Ann Diagn Pathol ; 46: 151493, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32179442

RESUMO

Cervical squamous cell carcinoma develops through a series of stages, including low-grade squamous intraepithelial lesions (LSIL), high-grade squamous intraepithelial lesions (HSIL), microinvasive squamous cell carcinoma (MISCC), and invasive squamous cell carcinoma (ISCC). The difference between HSIL and MISCC is the appearance of microinvasion, which determines the treatment for patients. However, sometimes it is difficult to differentiate HSIL from MISCC in morphology, and no effective markers are available to help determine microinvasion. Here, we evaluated the expression patterns of podoplanin in cervical tissues by immunohistochemistry staining. Results showed that podoplanin was specifically expressed in a continuous or discontinuous linear pattern within the basal layer of cells from normal cervical squamous epithelium (NS) (100%, 96/96) and HSIL (81%, 57/70). However, its expression was completely absent in microinvasive lesions (0%, 72/72), and the location of podoplanin expression loss was consistent with that of microinvasive lesions. Thus, for HSIL with positive podoplanin expression, the sudden loss of podoplanin represents the occurrence of early invasion. Furthermore, podoplanin was expressed in 3.4% (4/118) of ISCC, and its expression was not correlated with the age of the patient, tumor size, differentiation, FIGO stage, depth of invasion, lymph node, or distant metastasis. The prognosis of patients with positive podoplanin was slightly better than those without it (p > 0.05). Therefore, we found that podoplanin, as a new specific marker for the basal layer cells of cervical squamous epithelium, could assist the diagnosis of microinvasion in cervical squamous cell carcinoma. The specific staining pattern of podoplanin provides the possibility of clinical application in the future.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/diagnóstico , Glicoproteínas de Membrana/metabolismo , Displasia do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/diagnóstico , Adulto , Biomarcadores Tumorais/análise , Carcinoma de Células Escamosas/patologia , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Neoplasias do Colo do Útero/patologia , Displasia do Colo do Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA