Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(11): 5301, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38420664

RESUMO

Correction for 'Zeolitic imidazolate framework-derived composites with SnO2 and ZnO phase components for electrocatalytic carbon dioxide reduction' by Yayu Guan et al., Dalton Trans., 2022, 51, 7274-7283, https://doi.org/10.1039/d2dt00906d.

2.
Dalton Trans ; 52(25): 8778-8783, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37318034

RESUMO

Electrocatalytic CO2 reduction (ECR) has the potential to generate low-carbon fuels that can alleviate energy scarcity and reduce greenhouse gas emissions. In this study, we prepared a range of Pb-Zn bimetallic catalysts with a core-shell structure using a simple chemical reduction technique based on the differing activity characteristics of the metals. The highest faradaic efficiency for formate (FEformate) was achieved using Pb3Zn1 as the catalyst, with a value of 95.3% at -1.26VRHE in an H-cell (0.5 M KHCO3) and a current density of 11.18 mA cm-2. Notably, in the flow-cell (1 M KOH), FEformate exceeded 90% across a wide potential window, with a maximum FEformate value of 98.4% being achieved. The excellent catalytic performance of the bimetallic catalyst is attributed to its larger specific surface area and faster ECR kinetics, and the synergistic interaction between Pb and Zn improves the selectivity for formate production.

3.
Dalton Trans ; 52(13): 4136-4141, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36883983

RESUMO

A series of Pb-Sn catalysts were synthesized via facile chemical reduction for electrocatalytic CO2 reduction (ECR). The optimized sample (Pb7Sn1) achieved 90.53% formate faradaic efficiency (FE) at a potential of -1.9 V vs. Ag/AgCl. Electrochemical and material evaluation reveals that its high performance can be attributed to the rich active sites exposed by the high specific surface area of the electrode. In addition, the synergy between Pb and Sn is also a strong contributor to the high selectivity of formate. This work provides some insights into the preparation of simple and efficient ECR catalysts.

4.
Dalton Trans ; 52(16): 5277-5286, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36976629

RESUMO

The electrochemical reduction of CO2 (ERCO2) into economically valuable chemicals is one of the most promising ways to achieve carbon neutrality. Perovskite materials have shown potential applications in high-temperature catalysis and photocatalysis due to their unique structure, but their catalytic performance during the aqueous ERCO2 has rarely been investigated. In this study, we developed an efficient YbBiO3 perovskite catalyst (YBO@800) for CO2 conversion to formate, with a maximum faradaic efficiency of 98.3% at -0.9 VRHE, as well as a considerable faradaic efficiency (>90%) over a wide potential range (from -0.8 to -1.2 VRHE). Further analyses demonstrated that the structural evolution of YBO@800 occurred during the ERCO2 process, and the subsequent construction of the Bi/YbBiO3 heterostructure played a significant role in optimizing the rate-determining step of the ERCO2. This work inspires the development of perovskite catalysts for the ERCO2 and provides insight into the influence of the surface reconstruction of catalysts on their electrochemical performance.

5.
Dalton Trans ; 51(18): 7274-7283, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35481494

RESUMO

Zeolitic imidazolate framework (ZIF) and its derivatives have attracted a great deal of attention in the field of electrocatalysis. In this paper, a series of tin (Sn)-modified ZIF-based composites (ZSO-X/Y) are synthesized and used as catalysts for the electrochemical reduction of CO2 to produce low-carbon fuels. Among the catalysts obtained, ZSO-2/8 shows the best formate (HCOO-) selectivity compared with others. A faradaic efficiency of 76.70% and a catalytic current density of -9.81 mA cm-2 can be respectively achieved at a potential of -1.16 V vs. reversible hydrogen electrode (VRHE). The high catalytic performance can be attributed to the stable coexistence of two-phase components of SnO2/ZnO inside the catalyst. This work provides an insight into the development of high performance ZIF-based catalysts for the electrochemical reduction of CO2.

6.
J Colloid Interface Sci ; 612: 235-245, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34998187

RESUMO

Metal-organic frameworks (MOFs) and their derivatives have shown great potential as electrocatalysts, in virtue of their ease of functionalization and abundance of active sites. Here, we report a series of indium-doped bismuth MOF-derived composites (BiInX-Y@C) for the direct conversion of carbon dioxide (CO2) to hydrocarbon derivatives. Amongst the catalysts studied, BiIn5-500@C demonstrated high selectivity for the production of formate and intrinsic activity in a wide potential window, ranging from - 1.16 to - 0.76 V vs. RHE (VRHE). At - 0.86 VRHE, the Faradaic efficiency and total current density were determined as 97.5% and - 13.5 mA cm-2, respectively. In addition, a 15-h stability test shows no obvious signs of deactivation. Complementary density functional theory (DFT) calculations revealed that the In-doped Bi2O3 are the predominant active centers for HCOOH production in the reduction of CO2 under the action of the BiInX-Y@C catalyst. This work provides new detailed insights into reaction mechanism, and selectivity for reduction of CO2via MOFs, which are expected to inspire and guide the design of novel, selective and efficient catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...