Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-982405

RESUMO

The syndrome of dampness stagnancy due to spleen deficiency (DSSD) is relatively common globally. Although the pathogenesis of DSSD remains unclear, evidence has suggested that the gut microbiota might play a significant role. Radix Astragali, used as both medicine and food, exerts the effects of tonifying spleen and qi. Astragalus polysaccharide (APS) comprises a macromolecule substance extracted from the dried root of Radix Astragali, which has many pharmacological functions. However, whether APS mitigates the immune disorders underlying the DSSD syndrome via regulating gut microbiota and the relevant mechanism remains unknown. Here, we used DSSD rats induced by high-fat and low-protein (HFLP) diet plus exhaustive swimming, and found that APS of moderate molecular weight increased the body weight gain and immune organ indexes, decreased the levels of interleukin-1β (IL-1β), IL-6, and endotoxin, and suppressed the Toll-like receptor 4/nuclear factor-‍κB (TLR4/NF-‍κB) pathway. Moreover, a total of 27 critical genera were significantly enriched according to the linear discriminant analysis effect size (LEfSe). APS increased the diversity of the gut microbiota and changed its composition, such as reducing the relative abundance of Pseudoflavonifractor and Paraprevotella, and increasing that of Parasutterella, Parabacteroides, Clostridium XIVb, Oscillibacter, Butyricicoccus, and Dorea. APS also elevated the contents of short-chain fatty acids (SCFAs). Furthermore, the correlation analysis indicated that 12 critical bacteria were related to the body weight gain and immune organ indexes. In general, our study demonstrated that APS ameliorated the immune disorders in DSSD rats via modulating their gut microbiota, especially for some bacteria involving immune and inflammatory response and SCFA production, as well as the TLR4/NF-κB pathway. This study provides an insight into the function of APS as a unique potential prebiotic through exerting systemic activities in treating DSSD.


Assuntos
Ratos , Animais , NF-kappa B/metabolismo , Baço , Microbioma Gastrointestinal , Receptor 4 Toll-Like , Polissacarídeos/farmacologia , Astrágalo/metabolismo , Doenças do Sistema Imunitário/tratamento farmacológico , Peso Corporal
2.
Target Oncol ; 13(3): 389-398, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29754184

RESUMO

BACKGROUND: Despite remarkable activity in epidermal growth factor receptor (EGFR)-mutant lung cancer patients, the clinical efficacy of EGFR tyrosine kinase inhibitors (TKIs) is limited by the emergence of acquired resistance, which is mostly caused by a secondary T790M mutation. Fortunately, newly developed, mutant-selective EGFR-TKIs against T790M have been proven as an effective therapeutic approach although only osimertinib has received the FDA approval until now. OBJECTIVE: To determine the in vitro and in vivo efficacy of a new EGFR TKI, OBX1-012 in cells with mutant EGFR. METHODS: Effects of OBX1-012 on cellular viability and EGFR-related signaling were determined in EGFR-mutant non-small cell lung cancer (NSCLC) cells, including cells harboring T790M mutations. In addition, in vivo efficacy of OBX1-012 was evaluated in xenograft models. RESULTS: We report the discovery and preclinical assessment of another novel, mutant-selective EGFR-TKI, OBX1-012. Compared with other mutant-selective EGFR-TKIs such as olumitinib and osimertinib, it showed similar potency and selectivity for mutant EGFR. OBX1-012 treatment was highly effective against human EGFR-mutant lung cancer models with or without EGFR T790M, not only in vitro but also in vivo. However, OBX1-012 like other EGFR-TKIs failed to exhibit efficacy for the exon 20 insertion mutation or C797S mutation, which was generated by site-directed mutagenesis and stable transfection of Ba/F3 cells. CONCLUSIONS: These results identify OBX1-012 as a highly effective, mutant-selective EGFR-TKI for the treatment of T790M-mediated resistance in NSCLC.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA