Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 19(1): 360, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34416903

RESUMO

BACKGROUND: Gestational diabetes mellitus (GDM) is a serious public health issue affecting 9-15% of all pregnancies worldwide. Recently, it has been suggested that extracellular vesicles (EVs) play a role throughout gestation, including mediating a placental response to hyperglycaemia. Here, we investigated the EV-associated miRNA profile across gestation in GDM, assessed their utility in developing accurate, multivariate classification models, and determined the signaling pathways in skeletal muscle proteome associated with the changes in the EV miRNA profile. METHODS: Discovery: A retrospective, case-control study design was used to identify EV-associated miRNAs that vary across pregnancy and clinical status (i.e. GDM or Normal Glucose Tolerance, NGT). EVs were isolated from maternal plasma obtained at early, mid and late gestation (n = 29) and small RNA sequencing was performed. Validation: A longitudinal study design was used to quantify expression of selected miRNAs. EV miRNAs were quantified by real-time PCR (cases = 8, control = 14, samples at three times during pregnancy) and their individual and combined classification efficiencies were evaluated. Quantitative, data-independent acquisition mass spectrometry was use to establish the protein profile in skeletal muscle biopsies from normal and GDM. RESULTS: A total of 2822 miRNAs were analyzed using a small RNA library, and a total of 563 miRNAs that significantly changed (p < 0.05) across gestation and 101 miRNAs were significantly changed between NGT and GDM. Analysis of the miRNA changes in NGT and GDM separately identified a total of 256 (NGT-group), and 302 (GDM-group) miRNAs that change across gestation. A multivariate classification model was developed, based on the quantitative expression of EV-associated miRNAs, and the accuracy to correctly assign samples was > 90%. We identified a set of proteins in skeletal muscle biopsies from women with GDM associated with JAK-STAT signaling which could be targeted by the miRNA-92a-3p within circulating EVs. Interestingly, overexpression of miRNA-92a-3p in primary skeletal muscle cells increase insulin-stimulated glucose uptake. CONCLUSIONS: During early pregnancy, differently-expressed, EV-associated miRNAs may be of clinical utility in identifying presymptomatic women who will subsequently develop GDM later in gestation. We suggest that miRNA-92a-3p within EVs might be a protected mechanism to increase skeletal muscle insulin sensitivity in GDM.


Assuntos
Diabetes Gestacional , Vesículas Extracelulares , MicroRNAs , Estudos de Casos e Controles , Diabetes Gestacional/genética , Feminino , Humanos , Janus Quinases , Estudos Longitudinais , MicroRNAs/genética , Placenta , Gravidez , Estudos Retrospectivos , Fatores de Transcrição STAT , Transdução de Sinais
3.
Cancers (Basel) ; 13(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34298602

RESUMO

Hypoxia is a key regulator of cancer progression and chemoresistance. Ambiguity remains about how cancer cells adapt to hypoxic microenvironments and transfer oncogenic factors to surrounding cells. In this study, we determined the effects of hypoxia on the bioactivity of sEVs in a panel of ovarian cancer (OvCar) cell lines. The data obtained demonstrate a varying degree of platinum resistance induced in OvCar cells when exposed to low oxygen tension (1% oxygen). Using quantitative mass spectrometry (Sequential Window Acquisition of All Theoretical Fragment Ion Mass Spectra, SWATH) and targeted multiple reaction monitoring (MRM), we identified a suite of proteins associated with glycolysis that change under hypoxic conditions in cells and sEVs. Interestingly, we identified a differential response to hypoxia in the OvCar cell lines and their secreted sEVs, highlighting the cells' heterogeneity. Proteins are involved in metabolic reprogramming such as glycolysis, including putative hexokinase (HK), UDP-glucuronosyltransferase 1-6 (UD16), and 6-phosphogluconolactonase (6 PGL), and their presence correlates with the induction of platinum resistance. Furthermore, when normoxic cells were exposed to sEVs from hypoxic cells, platinum-resistance increased significantly (p < 0.05). Altered chemoresistance was associated with changes in glycolysis and fatty acid synthesis. Finally, sEVs isolated from a clinical cohort (n = 31) were also found to be enriched in glycolysis-pathway proteins, especially in patients with recurrent disease. These data support the hypothesis that hypoxia induces changes in sEVs composition and bioactivity that confers carboplatin resistance on target cells. Furthermore, we propose that the expression of sEV-associated glycolysis-pathway proteins is predictive of ovarian cancer recurrence and is of clinical utility in disease management.

4.
Nanomedicine ; 28: 102207, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32334098

RESUMO

Carboplatin, administered as a single drug or in combination with paclitaxel, is the standard chemotherapy treatment for patients with ovarian cancer (OVCA). Recent evidence suggests that miRNAs associated with small extracellular vesicles (sEVs) participate in the development of chemoresistance. We studied the effect of carboplatin in a heterogeneity population of OVCA cells and their derived sEVs to identify mechanisms associated with chemoresistance. sEVs were quantified using an engineered superparamagnetic material, gold-loaded ferric oxide nanotubes and a screen-printed electrode. miR-21-3p, miR-21-5p, and miR-891-5p are enriched in sEVs, and they contribute to carboplatin resistance in OVCA. Using a quantitative MS/MS, miR-21-5p activates glycolysis and increases the expression of ATP-binding cassette family and a detoxification enzyme. miR-21-3p and miR-891-5p increase the expression of proteins involved in DNA repair mechanisms. Interestingly, the levels of miR-891-5p within sEVs are significantly higher in patients at risk of ovarian cancer relapse. Identification of miRNAs in sEVs also provides the opportunity to track them in biological fluids to potentially determine patient response to chemotherapy.


Assuntos
Biomarcadores/metabolismo , MicroRNAs/genética , Neoplasias Ovarianas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Exossomos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , MicroRNAs/metabolismo , Platina/uso terapêutico
5.
FASEB J ; 34(4): 5724-5739, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32154621

RESUMO

The mechanisms underpinning maternal metabolic adaptations to a healthy pregnancy and in gestational diabetes mellitus (GDM) remain poorly understood. We hypothesized that small extracellular vesicles (sEVs) isolated from healthy pregnant women promote islet glucose-stimulated insulin secretion (GSIS) and peripheral insulin resistance in nonpregnant mice and that sEVs from GDM women fail to stimulate insulin secretion and cause exacerbated insulin resistance. Small EVs were isolated from plasma of nonpregnant, healthy pregnant, and GDM women at 24-28 weeks of gestation. We developed a novel approach in nonpregnant mice involving a mini-osmotic pump for continuous 4-day jugular venous infusion of sEVs and determined their effects on glucose tolerance in vivo and islets and skeletal muscle in vitro. Fasting insulin was elevated in mice infused with pregnant sEVs as compared to sEVs from nonpregnant and GDM women. Mice infused with sEVs from GDM women developed glucose intolerance. GSIS was increased in mice infused with healthy pregnancy sEVs compared to mice receiving nonpregnant sEVs. GSIS and muscle basal insulin signaling, and insulin responsiveness were attenuated in mice infused with GDM sEVs. sEVs represent a novel mechanism regulating maternal glucose homeostasis in pregnancy and we speculate that altered sEV content contributes to the development of GDM.


Assuntos
Glicemia/metabolismo , Diabetes Gestacional/fisiopatologia , Vesículas Extracelulares/metabolismo , Intolerância à Glucose/fisiopatologia , Homeostase , Resistência à Insulina , Animais , Feminino , Humanos , Secreção de Insulina , Camundongos , Camundongos Endogâmicos C57BL , Gravidez
6.
Int J Mol Sci ; 21(3)2020 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-32046334

RESUMO

Extracellular membrane vesicles (EVs) have emerged as potential candidates for diagnostics and therapeutics. We have previously reported that keratinocytes release three types of EVs into the extracellular environment. Importantly, those EVs contain a large number of microRNAs (miRNAs) as cargo. In this study, we examined the expression level of keratinocyte-derived EV miRNAs, their target genes and potential functions. Next generation sequencing results showed that over one hundred miRNAs in each EV subtype exhibited greater than 100 reads per million (RPM), indicating a relatively high abundance. Analysis of the miRNAs with the highest abundance revealed associations with different keratinocyte cell sources. For instance, hsa-miR-205 was associated with the HaCaT cells whereas hsa-miR-21, hsa-miR-203, hsa-miR-22 and hsa-miR-143 were associated with human primary dermal keratinocytes (PKCs). Additionally, functional annotation analysis of genes regulated by those miRNAs, especially with regard to biological processes, also revealed cell-type-specific associations with either HaCaTs or PKCs. Indeed, EV functional effects were related to their parental cellular origin; specifically, PKC-derived EVs influenced fibroblast migration whereas HaCaT-derived EVs did not. In addition, the data in this current study indicates that keratinocyte-derived EVs and/or their cargoes have potential applications for wound healing.


Assuntos
Vesículas Extracelulares/metabolismo , Queratinócitos/metabolismo , MicroRNAs , Linhagem Celular , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de RNA
7.
Endocrinology ; 161(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31995166

RESUMO

Spontaneous preterm birth (PTB) is a major obstetrical problem around the globe and the mechanisms leading to PTB are unclear. Recently, changes in the circulating levels of placental extracellular vesicles (EVs) during pregnancy have been associated with various pregnancy complications. However, progress in the field is hindered by the inability to isolate placental EVs from the maternal circulation. A longitudinal study design was used to determine the protein cargo present in circulating placental EVs in maternal plasma of term and PTB across gestation (ie, first, second, and third trimester). Placental-derived EVs were enriched from the total EV population based on their expression of membrane-bound placental alkaline phosphatase (PLAP). A quantitative, information-independent acquisition (sequential windowed acquisition of all theoretical mass spectra [SWATH]) approach identified and quantified the placental EV protein contents. PLAP+ EVs did not change in characteristics (size, shape, and markers) but did differ in numbers across gestation with low levels in PTB. A comparison analysis between the PLAP+ EV proteome from term and PTB revealed 96 proteins differing significantly (P < 0.05, false discovery rate 1%) across gestation. Bioinformatics analysis of differentially expressed proteins revealed consistent upregulation of inflammatory pathways in both upregulation of epithelial mesenchymal transition pathways at term and downregulation of coagulation/complement activation in preterm. Characterization of the proteomic profile in PLAP+ EVs across gestation demonstrates dramatic changes, which might be used to understand the biological process associated with early parturition and develop biomarkers for predicting high-risk status for PTB.


Assuntos
Vesículas Extracelulares/metabolismo , Placenta/metabolismo , Circulação Placentária/fisiologia , Nascimento Prematuro/metabolismo , Proteoma/metabolismo , Nascimento a Termo/metabolismo , Exossomos/metabolismo , Feminino , Humanos , Recém-Nascido , Estudos Longitudinais , Espectrometria de Massas , Gravidez , Proteínas da Gravidez/metabolismo , Proteômica
8.
Front Genet ; 10: 1150, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803237

RESUMO

Carcinogenesis is accompanied by widespread DNA methylation changes within the cell. These changes are characterized by a globally hypomethylated genome with focal hypermethylation of numerous 5'-cytosine-phosphate-guanine-3' (CpG) islands, often spanning gene promoters and first exons. Many of these epigenetic changes occur early in tumorigenesis and are highly pervasive across a tumor type. This allows DNA methylation cancer biomarkers to be suitable for early detection and also to have utility across a range of areas relevant to cancer detection and treatment. Such tests are also simple in construction, as only one or a few loci need to be targeted for good test coverage. These properties make cancer-associated DNA methylation changes very attractive for development of cancer biomarker tests with substantive clinical utility. Across the patient journey from initial detection, to treatment and then monitoring, there are several points where DNA methylation assays can inform clinical practice. Assays on surgically removed tumor tissue are useful to determine indicators of treatment resistance, prognostication of outcome, or to molecularly characterize, classify, and determine the tissue of origin of a tumor. Cancer-associated DNA methylation changes can also be detected with accuracy in the cell-free DNA present in blood, stool, urine, and other biosamples. Such tests hold great promise for the development of simple, economical, and highly specific cancer detection tests suitable for population-wide screening, with several successfully translated examples already. The ability of circulating tumor DNA liquid biopsy assays to monitor cancer in situ also allows for the ability to monitor response to therapy, to detect minimal residual disease and as an early biomarker for cancer recurrence. This review will summarize existing DNA methylation cancer biomarkers used in clinical practice across the application domains above, discuss what makes a suitable DNA methylation cancer biomarker, and identify barriers to translation. We discuss technical factors such as the analytical performance and product-market fit, factors that contribute to successful downstream investment, including geography, and how this impacts intellectual property, regulatory hurdles, and the future of the marketplace and healthcare system.

9.
J Transl Med ; 17(1): 392, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775784

RESUMO

BACKGROUND: The "nonclassic" apparent mineralocorticoid excess (NC-AME) has been identified in approximately 7% of general population. This phenotype is characterized by low plasma renin activity (PRA), high serum cortisol (F) to cortisone (E) ratio, low cortisone, high Fractional Excretion of potassium (FEK) and normal-elevated systolic blood pressure (SBP). An early detection and/or identification of novel biomarkers of this phenotype could avoid the progression or future complications leading to arterial hypertension. Isolation of extracellular vesicles, such as exosomes, in specific biofluids support the identification of tissue-specific RNA and miRNA, which may be useful as novel biomarkers. Our aim was to identify miRNAs within urinary exosomes associated to the NC-AME phenotype. METHODS: We perform a cross-sectional study in a primary care cohort of 127 Chilean subjects. We measured BP, serum cortisol, cortisone, aldosterone, PRA. According to the previous reported, a subgroup of subjects was classified as NC-AME (n = 10). Urinary exosomes were isolated and miRNA cargo was sequenced by Illumina-NextSeq-500. RESULTS: We found that NC-AME subjects had lower cortisone (p < 0.0001), higher F/E ratio (p < 0.0001), lower serum potassium (p = 0.009) and higher FEK 24 h (p = 0.03) than controls. We found miR-204-5p (fold-change = 0.115; p 0.001) and miR-192-5p (fold-change = 0.246; p 0.03) are both significantly downregulated in NC-AME. miR-192-5p expression was correlated with PRA (r = 0.45; p 0.028) and miR-204-5p expression with SBP (r = - 0.48, p 0.027) and F/E ratio (r = - 0.48; p 0.026). CONCLUSIONS: These findings could support a potential role of these miRNAs as regulators and novel biomarkers of the NC-AME phenotype.


Assuntos
Regulação para Baixo/genética , Exossomos/genética , MicroRNAs/genética , Síndrome de Excesso Aparente de Minerolocorticoides/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Exossomos/ultraestrutura , Feminino , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Síndrome de Excesso Aparente de Minerolocorticoides/urina , Reprodutibilidade dos Testes , Adulto Jovem , Síndrome de Excesso Aparente de Minerolocorticoides
10.
Clin Sci (Lond) ; 133(13): 1401-1419, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31227603

RESUMO

Exosomes are small nanovesicles that carry bioactive molecules which can be delivered to neighbouring cells to modify their biological functions. Studies have showed that exosomes from ovarian cancer (OVCA) cells can alter the cell migration and proliferation of cells within the tumour microenvironment, an effect modulated by the invasiveness capacity of their originating cells. Using an OVCA cell line xenograph mouse model, we showed that exosomes derived from a high invasiveness capacity cell line (exo-SKOV-3) promoted metastasis in vivo compared with exosomes from a low invasiveness capacity cell line (exo-OVCAR-3). Analysis from anin vivo imaging system (IVIS) revealed that exo-SKOV-3 formed metastatic niches, whereas exo-OVCAR-3 formed colonies of clustered cells close to the site of injection. Interestingly, kinetic parameters showed that the half-maximal stimulatory time (ST50) of tumour growth with exo-OVCAR-3 (4.0 ± 0.31 weeks) was significantly lower compared with the ST50 in mice injected with exo-SKOV-3 (4.5 ± 0.32 weeks). However, the number of metastic nodes in mice injected with exo-SKOV-3 was higher compared with exo-OVCAR-3. Using a quantitative mass spectrometry approach (SWATH MS/MS) followed by bioinformatics analysis using the Ingenuity Pathway Analysis (IPA), we identified a total of 771 proteins. Furthermore, 40 of these proteins were differentially expressed in tumour tissues from mice injected with exo-SKOV-3 compared with exo-OVCAR-3, and associated with Wnt canonical pathway (ß-catenin). Finally, we identified a set of proteins which had elevated expression in the circulating exosomes in association with tumour metastasis. These observations suggest that exosomal signalling plays an important role in OVCA metastasis.


Assuntos
Movimento Celular , Exossomos/patologia , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/secundário , Animais , Linhagem Celular Tumoral , Proliferação de Células , Exossomos/metabolismo , Exossomos/transplante , Feminino , Humanos , Camundongos Endogâmicos NOD , Invasividade Neoplásica , Metástase Neoplásica , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Peritoneais/metabolismo , Mapas de Interação de Proteínas , Fatores de Tempo , Carga Tumoral , Microambiente Tumoral , Via de Sinalização Wnt
11.
Endocrinology ; 160(3): 639-650, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668697

RESUMO

Exosomes are membrane-bound nanovesicles that transport molecular signals between cells. This study determined changes in maternal plasma exosome proteomics contents in term and preterm births. Maternal plasma (MP) samples were collected from group 1: term not in labor (TNIL, n = 13); group 2: term in labor (TL, n = 11); group 3: preterm premature rupture of membranes (pPROM, n = 8); and group 4: preterm birth (PTB, n = 13). Exosomes isolated from plasma by differential density centrifugation followed by size exclusion chromatography were characterized by morphology (electron microscopy), quantity and size (nanoparticle tracking analysis), and markers (western blot). A quantitative, information-independent acquisition [sequential windowed acquisition of all theoretical mass spectra (SWATH-MS)] approach was used to determine the protein profile in exosomes. Ingenuity Pathway Analysis determined pathways associated with the protein profile identified in exosomes. MP exosomes were spherical, had a mean diameter of 120 nm, and were positive for exosomal proteins CD63 and TSG101 irrespective of pregnancy status. No distinct changes in exosome quantities were seen in maternal circulation across the groups. SWATH-MS identified 72 statistically significant proteins across the groups studied. Bioinformatics analysis showed the proteins within the exosomes in TNIL, TL, pPROM, and PTB target pathways mainly associated with inflammatory and metabolic signals. Exosomal data suggest that homeostatic imbalances, specifically inflammatory and endocrine signaling, might disrupt pregnancy maintenance resulting in labor-related changes both at term and preterm. Reflection of physiologic changes in exosomes is suggestive of its usefulness as biomarkers and cellular function indicators.


Assuntos
Exossomos/metabolismo , Nascimento Prematuro/sangue , Proteoma , Nascimento a Termo/sangue , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Espectrometria de Massas , Gravidez , Adulto Jovem
12.
Proteomics ; 19(1-2): e1800164, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30536821

RESUMO

Several factors including placental hormones (PH) released from the human placenta have been associated with the development of insulin resistance and gestational diabetes mellitus (GDM). However, circulating levels of PH does not correlate well with maternal insulin sensitivity across gestation, suggesting that other, previously unrecognized, mechanisms may be involved. The levels of circulating exosomes are higher in GDM compared to normal. GDM derived exosomes produce greater release of pro-inflammatory cytokines from endothelial cells compared to exosomes from normal, suggesting that their contents may differ compared to normal pregnancies. Using a quantitative, information-independent acquisition (Sequential Windowed Acquisition of All Theoretical Mass Spectra [SWATH]) approach, differentially abundant circulating exosome proteins are identified in women with normal glucose tolerance (NGT) and GDM at the time of GDM diagnosis. A total of 78 statistically significant proteins in the relative expression of exosomal proteins in GDM are compared with NGT. Bioinformatic analysis shows that the exosomal proteins in GDM target pathways are mainly associated with energy production, inflammation, and metabolism. Finally, an independent cohort of patients is used to validate some of the proteins identified by SWATH. The data obtained may be of utility in elucidating the underlying physiological mechanisms associated with insulin resistance in GDM.


Assuntos
Diabetes Gestacional/metabolismo , Exossomos/metabolismo , Espectrometria de Massas/métodos , Proteômica/métodos , Biologia Computacional , Feminino , Humanos , Gravidez , Transdução de Sinais/fisiologia
13.
Endocrinology ; 160(2): 249-275, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30358826

RESUMO

Despite decades of research in the field of human reproduction, the mechanisms responsible for human parturition still remain elusive. The objective of this study was to describe the changes in the exosomal miRNA concentrations circulating in the maternal plasma between mothers delivering term and preterm neonates, across gestation using a longitudinal study design. This descriptive study identifies the miRNA content in exosomes present in maternal plasma of term and preterm birth (PTB) (n = 20 and n = 10 per each gestational period, respectively) across gestation (i.e., first, second, and third trimesters and at the time of delivery). Changes in exosomal miRNA signature in maternal plasma during term and preterm gestation were determined using the NextSeq 500 high-output 75 cycles sequencing platform. A total of 167 and 153 miRNAs were found to significantly change (P < 0.05) as a function of the gestational age across term and PTB pregnancies, respectively. Interestingly, a comparison analysis between the exosomal miRNA profile between term and PTB reveals a total of 173 miRNAs that significantly change (P < 0.05) across gestation. Specific trends of changes (i.e., increase, decrease, and both) as a function of the gestational age were also identified. The bioinformatics analyses establish that the differences in the miRNA profile are targeting signaling pathways associated with TGF-ß signaling, p53, and glucocorticoid receptor signaling, respectively. These data suggest that the miRNA content of circulating exosomes in maternal blood might represent a biomolecular "fingerprint" of the progression of pregnancy.


Assuntos
Exossomos/metabolismo , MicroRNAs/metabolismo , Gravidez/metabolismo , Nascimento Prematuro/metabolismo , Nascimento a Termo/metabolismo , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Idade Gestacional , Humanos , Estudos Longitudinais , Adulto Jovem
14.
J Clin Endocrinol Metab ; 104(5): 1735-1752, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30517676

RESUMO

CONTEXT: Molecules produced by adipose tissue (AT) function as an endocrine link between maternal AT and fetal growth by regulating placental function in normal women and women with gestational diabetes mellitus (GDM). OBJECTIVE: We hypothesized that AT-derived exosomes (exo-AT) from women with GDM would carry a specific set of proteins that influences glucose metabolism in the placenta. DESIGN: Exosomes were isolated from omental AT-conditioned media from normal glucose tolerant (NGT) pregnant women (n = 65) and pregnant women with GDM (n = 82). Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry was used to construct a small ion library from AT and exosomal proteins, followed by ingenuity pathway analysis to determine the canonical pathways and biofunctions. The effect of exosomes on human placental cells was determined using a Human Glucose Metabolism RT2 Profiler PCR array. RESULTS: The number of exosomes (vesicles/µg of tissue/24 hours) was substantially (1.7-fold) greater in GDM than in NGT, and the number of exosomes correlated positively with the birthweight Z score. Ingenuity pathway analysis of the exosomal proteins revealed differential expression of the proteins targeting the sirtuin signaling pathway, oxidative phosphorylation, and mechanistic target of rapamycin signaling pathway in GDM compared with NGT. GDM exo-AT increased the expression of genes associated with glycolysis and gluconeogenesis in placental cells compared with the effect of NGT exo-AT. CONCLUSIONS: Our findings are consistent with the possibility that AT exosomes play an important role in mediating the changes in placental function in GDM and might be responsible for some of the adverse consequences in this pregnancy complication, such as fetal overgrowth.


Assuntos
Tecido Adiposo/metabolismo , Biomarcadores/metabolismo , Diabetes Gestacional/fisiopatologia , Exossomos/metabolismo , Glucose/metabolismo , Placenta/metabolismo , Proteoma/análise , Diabetes Gestacional/metabolismo , Feminino , Humanos , Gravidez , Prognóstico , Transdução de Sinais
15.
Endocr Relat Cancer ; 25(12): R663-R685, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30400025

RESUMO

Chemoresistance is one of the major obstacles in the treatment of cancer patients. It poses a fundamental challenge to the effectiveness of chemotherapy and is often linked to relapse in patients. Chemoresistant cells can be identified in different types of cancers; however, ovarian cancer has one of the highest rates of chemoresistance-related relapse (50% of patients within 5 years). Resistance in cells can either develop through prolonged cycles of treatment or through intrinsic pathways. Mechanistically, the problem of drug resistance is complex mainly because numerous factors are involved, such as overexpression of drug efflux pumps, drug inactivation, DNA repair mechanisms and alterations to and/or mutations in the drug target. Additionally, there is strong evidence that circulating miRNAs participate in the development of chemoresistance. Recently, miRNAs have been identified in exosomes, where they are encapsulated and hence protected from degradation. These miRNAs within exosomes (exo-miRNAs) can regulate the gene expression of target cells both locally and systemically. Exo-miRNAs play an important role in disease progression and can potentially facilitate chemoresistance in cancer cells. In addition, and from a diagnostic perspective, exo-miRNAs profiles may contribute to the development of predictive models to identify responder and non-responder chemotherapy. Such model may also be used for monitoring treatment response and disease progression. Exo-miRNAs may ultimately serve as both a predictive biomarker for cancer response to therapy and as a prognostic marker for the development of chemotherapy resistance. Therefore, this review examines the potential role of exo-miRNAs in chemotherapy in ovarian cancer.


Assuntos
Exossomos , MicroRNAs , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Animais , Antineoplásicos/uso terapêutico , Dano ao DNA , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Prognóstico
16.
Oncotarget ; 9(78): 34644-34657, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30410665

RESUMO

MicroRNA (miRNA)s are dysregulated in Diffuse large B-cell lymphoma (DLBCL), where they reflect the malignant B-cells and the immune infiltrate within the tumor microenvironment. There remains a paucity of data in DLBCL regarding cell-free (c-f) miRNA as disease response biomarkers. Immunosuppressive monocyte/macrophages, which are enriched in DLBCL, are disease response markers in DLBCL, with miRNA key regulators of their immunosuppressive function. Our aim was to determine whether plasma miRNA that reflect the activity of the malignant B-cell and/or immunosuppressive monocytes/macrophages, have value as minimally-invasive disease response biomarkers in DLBCL. Quantification of 99 DLBCL tissues, to select miRNA implicated in immunosuppressive monocytes/macrophage biology, found miR-494 differentially elevated. In a discovery cohort (22 patients), pre-therapy c-f miR-494 and miR-21 but not miR-155 were raised relative to healthy plasma. Both miR-494 and miR-21 levels 3-6 months reduced post immuno-chemotherapy. The validation cohort (56 patients) was from a prospective clinical trial. Interestingly, in sequential samples both miRNAs decreased in patients becoming Positron Emission Tomography/Computerized Tomography (PET/CT)-ve, but not in those remaining interim-PET/CT+. Patient monocytes were phenotypically and functionally immunosuppressive with ex-vivo monocyte depletion enhancing T-cell proliferation in patient but not healthy samples. Pre-therapy monocytes showed an immunosuppressive transcriptome and raised levels of miR-494. MiR-494 was present in all c-f nanoparticle fractions but was most readily detectable in unfractionated plasma. Circulating c-f miR-494 and miR-21 are disease response biomarkers with differential response stratified by interim-PET/CT in patients with DLBCL. Further studies are required to explore their manipulation as potential therapeutic targets.

17.
Clin Sci (Lond) ; 132(22): 2451-2467, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30254065

RESUMO

There is increasing evidence that miRNAs, which are enriched in nanovesicles called exosomes, are important regulators of gene expression. When compared with normal pregnancies, pregnancies with gestational diabetes mellitus (GDM) are associated with skeletal muscle insulin resistance as well as increased levels of circulating placental exosomes. Here we investigated whether placental exosomes in GDM carry a specific set of miRNAs associated with skeletal muscle insulin sensitivity. Exosomes were isolated from chorionic villous (CV) explants from both women with Normal Glucose Tolerant (NGT) and GDM pregnancies. Using miRNA sequencing, we identified a specific set of miRNAs selectively enriched with exosomes and compared with their cells of origin indicating a specific packaging of miRNAs into exosomes. Gene target and ontology analysis of miRNA differentially expressed in exosomes secreted in GDM compared with NGT are associated with pathways regulating cell migration and carbohydrate metabolism. We determined the expression of a selected set of miRNAs in placenta, plasma, and skeletal muscle biopsies from NGT and GDM. Interestingly, the expression of these miRNAs varied in a consistent pattern in the placenta, in circulating exosomes, and in skeletal muscle in GDM. Placental exosomes from GDM pregnancies decreased insulin-stimulated migration and glucose uptake in primary skeletal muscle cells obtained from patients with normal insulin sensitivity. Interestingly, placental exosomes from NGT increase migration and glucose uptake in response to insulin in skeletal muscle from diabetic subjects. These findings suggest that placental exosomes might have a role in the changes on insulin sensitivity in normal and GDM pregnancies.


Assuntos
Vilosidades Coriônicas/metabolismo , Diabetes Gestacional/genética , Exossomos/genética , Hipoglicemiantes/farmacologia , Resistência à Insulina/genética , Insulina/farmacologia , MicroRNAs/metabolismo , Mioblastos Esqueléticos/efeitos dos fármacos , Transcriptoma , Adulto , Estudos de Casos e Controles , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/metabolismo , Exossomos/metabolismo , Feminino , Glucose/metabolismo , Humanos , MicroRNAs/genética , Mioblastos Esqueléticos/metabolismo , Gravidez , Adulto Jovem
18.
Artigo em Inglês | MEDLINE | ID: mdl-30258405

RESUMO

Extracellular vesicles (EVs) are mammalian cell-derived nano-scale structures enclosed by a lipid bilayer that were previously considered to be cell debris with little biological value. However, EVs are now recognized to possess biological function, acting as a packaging, transport and delivery mechanisms by which functional molecules (i.e., miRNAs) can be transferred to target cells over some distance. To examine the miRNA from keratinocyte-derived EVs, we isolated three distinct populations of EVs from both HaCaT and primary human keratinocytes (PKCs) and characterized their biophysical, biochemical and functional features by using microscopy, immunoblotting, nanoparticle tracking, and next generation sequencing. We identified 1,048; 906; and 704 miRNAs, respectively, in apoptotic bodies (APs), microvesicles (MVs) and exosomes (EXs) released from HaCaT, and 608; 506; and 622 miRNAs in APs, MVs and EXs released from PKCs. In which, there were 623 and 437 identified miRNAs common to three HaCaT-derived EVs and PKC-derived EVs, respectively. In addition, we found hundreds of exosomal miRNAs that were previously un-reported. Differences in the abundance levels of the identified EV miRNAs could discriminate between the three EV populations. These data contribute substantially to knowledge within the EV-identified miRNA database, especially with regard to keratinocyte-derived EV miRNA content.

19.
Clin Sci (Lond) ; 132(18): 2029-2044, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30219799

RESUMO

Ovarian cancer has resulted in over 140 000 deaths reported annually worldwide. This is often attributed to cellular changes in the microenvironment, including increased migration of mesenchymal stem cells (MSCs) and endothelial cells (ECs) to facilitate metastasis. Recently, the ability of exosomes to communicate signals between cells (and promote cancer progression) has been established. In the present study, we explored the effect of exosomes on cells present in the tumour microenvironment. Exosomes were isolated from ovarian cancer cells with different invasive capacity (high = SKOV-3 and low = OVCAR-3) by differential and buoyant density centrifugation and characterised using nanoparticle tracking analysis (NTA), Western blot, and EM. Exosome secretion was positively correlated with invasiveness of releasing cells. Proteomic analyses identified common and unique proteins between exosomes from SKOV-3 and OVCAR-3 with gene ontology analyses revealing that these exosomes are involved in the regulation of cell migration. Since the tumour microenvironment contains multiple cell types, including MSCs and ECs, we examined the effect of these exosomes on MSC and EC migration. Exosomes promoted MSC and EC migration in a time- and concentration-dependent manner. The effect of exosomes isolated from SKOV-3 on cell migration was significantly higher compared with exosomes from OVCAR-3. Thus, we suggest that exosomes from ovarian cancer cells contain a specific set of proteins that are representative of its cell of origin and the invasive capacity.


Assuntos
Células Endoteliais/metabolismo , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteômica/métodos , Comunicação Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Exossomos/genética , Feminino , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Microambiente Tumoral/genética
20.
Endocrinology ; 159(5): 2229-2240, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635386

RESUMO

Our objective was to determine the amniotic fluid-derived exosomal proteomic profile in patients who had spontaneous preterm birth (PTB) or preterm premature rupture of membranes (pPROM) compared with those who delivered at term. A cross-sectional study of a retrospective cohort was used to quantify and determine the protein content of exosomes present in amniotic fluid, in PTB or pPROM, and normal term labor (TL) or term not in labor (TNIL) pregnancies. Exosomes were isolated by differential centrifugation and quantified using nanocrystals (Qdot) coupled to CD63 and placental alkaline phosphatase (PLAP) by fluorescence nanoparticle tracking analysis. The exosomal proteomic profile was identified by liquid chromatography-tandem mass spectrometry, and a small ion library was constructed to quantify the proteomic data by Sequential Window Acquisition of All Theoretical analysis. Ingenuity Pathway Analysis determined canonical pathways and biofunctions associated with dysregulated proteins. Amniotic fluid exosomes have similar shape and quantity regardless of the conditions; however, the PLAP/CD63 ratios for TL, PTB, and pPROM were significantly higher (∼3.8-, ∼4.4-, and ∼3.5-fold, respectively) compared with TNIL. The PLAP/CD63 ratio was also significantly higher (∼1.3-fold) in PTB compared with pPROM. Biological functions primarily indicated nonspecific inflammatory response regardless of condition, but unique profiles were also identified in cases (PTB and pPROM) compared with term. Amniotic fluid exosomes provide information specific to normal and abnormal parturition. Inflammatory marker enrichment and its uniqueness in term and preterm pregnancies support the value of exosomes in determining underlying physiology associated with term and preterm parturition.


Assuntos
Líquido Amniótico/metabolismo , Exossomos/metabolismo , Ruptura Prematura de Membranas Fetais/metabolismo , Trabalho de Parto Prematuro/metabolismo , Nascimento Prematuro/metabolismo , Proteoma/metabolismo , Adulto , Estudos de Casos e Controles , Cromatografia Líquida , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Trabalho de Parto/metabolismo , Nanopartículas , Gravidez , Proteômica , Estudos Retrospectivos , Espectrometria de Massas em Tandem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...