Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(5): 306, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693105

RESUMO

Colorectal cancers (CRCs) are highly heterogeneous and show a hierarchical organization, with cancer stem cells (CSCs) responsible for tumor development, maintenance, and drug resistance. Our previous studies showed the importance of thyroid hormone-dependent signaling on intestinal tumor development and progression through action on stem cells. These results have a translational value, given that the thyroid hormone nuclear receptor TRα1 is upregulated in human CRCs, including in the molecular subtypes associated with CSC features. We used an established spheroid model generated from the human colon adenocarcinoma cell line Caco2 to study the effects of T3 and TRα1 on spheroid formation, growth, and response to conventional chemotherapies. Our results show that T3 treatment and/or increased TRα1 expression in spheroids impaired the response to FOLFIRI and conferred a survival advantage. This was achieved by stimulating drug detoxification pathways and increasing ALDH1A1-expressing cells, including CSCs, within spheroids. These results suggest that clinical evaluation of the thyroid axis and assessing TRα1 levels in CRCs could help to select optimal therapeutic regimens for patients with CRC. Proposed mechanism of action of T3/TRα1 in colon cancer spheroids. In the control condition, TRα1 participates in maintaining homeostatic cell conditions. The presence of T3 in the culture medium activates TRα1 action on target genes, including the drug efflux pumps ABCG2 and ABCB1. In the case of chemotherapy FOLFIRI, the increased expression of ABC transcripts and proteins induced by T3 treatment is responsible for the augmented efflux of 5-FU and Irinotecan from the cancer cells. Taken together, these mechanisms contribute to the decreased efficacy of the chemotherapy and allow cells to escape the treatment. Created with BioRender.com .


Assuntos
Camptotecina/análogos & derivados , Neoplasias do Colo , Fluoruracila , Células-Tronco Neoplásicas , Esferoides Celulares , Receptores alfa dos Hormônios Tireóideos , Tri-Iodotironina , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Receptores alfa dos Hormônios Tireóideos/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Células CACO-2 , Neoplasias do Colo/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Neoplasias do Colo/genética , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Tri-Iodotironina/farmacologia , Leucovorina/farmacologia , Leucovorina/uso terapêutico , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Fenótipo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Família Aldeído Desidrogenase 1/metabolismo , Família Aldeído Desidrogenase 1/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Retinal Desidrogenase/metabolismo , Retinal Desidrogenase/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética
2.
bioRxiv ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38585848

RESUMO

RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. SERBP1 is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. Using a proteomics approach followed by functional analysis, we defined SERBP1's interactome. We uncovered novel SERBP1 roles in splicing, cell division, and ribosomal biogenesis and showed its participation in pathological stress granules and Tau aggregates in Alzheimer's disease brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.

3.
Mob DNA ; 14(1): 12, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684690

RESUMO

BACKGROUND: Reverse-transcribed gene copies (retrocopies) have emerged as major sources of evolutionary novelty. MicroRNAs (miRNAs) are small and highly conserved RNA molecules that serve as key post-transcriptional regulators of gene expression. The origin and subsequent evolution of miRNAs have been addressed but not fully elucidated. RESULTS: In this study, we performed a comprehensive investigation of miRNA origination through retroduplicated mRNA sequences (retro-miRs). We identified 17 retro-miRs that emerged from the mRNA retrocopies. Four of these retro-miRs had de novo origins within retrocopied sequences, while 13 retro-miRNAs were located within exon regions and duplicated along with their host mRNAs. We found that retro-miRs were primate-specific, including five retro-miRs conserved among all primates and two human-specific retro-miRs. All retro-miRs were expressed, with predicted and experimentally validated target genes except miR-10527. Notably, the target genes of retro-miRs are involved in key biological processes such as metabolic processes, cell signaling, and regulation of neurotransmitters in the central nervous system. Additionally, we found that these retro-miRs play a potential oncogenic role in cancer by targeting key cancer genes and are overexpressed in several cancer types, including liver hepatocellular carcinoma and stomach adenocarcinoma. CONCLUSIONS: Our findings demonstrated that mRNA retrotransposition is a key mechanism for the generation of novel miRNAs (retro-miRs) in primates. These retro-miRs are expressed, conserved, have target genes with important cellular functions, and play important roles in cancer.

4.
RNA Biol ; 20(1): 311-322, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37294214

RESUMO

The exon junction complex (EJC) plays key roles throughout the lifespan of RNA and is particularly relevant in the nervous system. We investigated the roles of two EJC members, the paralogs MAGOH and MAGOHB, with respect to brain tumour development. High MAGOH/MAGOHB expression was observed in 14 tumour types; glioblastoma (GBM) showed the greatest difference compared to normal tissue. Increased MAGOH/MAGOHB expression was associated with poor prognosis in glioma patients, while knockdown of MAGOH/MAGOHB affected different cancer phenotypes. Reduced MAGOH/MAGOHB expression in GBM cells caused alterations in the splicing profile, including re-splicing and skipping of multiple exons. The binding profiles of EJC proteins indicated that exons affected by MAGOH/MAGOHB knockdown accumulated fewer complexes on average, providing a possible explanation for their sensitivity to MAGOH/MAGOHB knockdown. Transcripts (genes) showing alterations in the splicing profile are mainly implicated in cell division, cell cycle, splicing, and translation. We propose that high MAGOH/MAGOHB levels are required to safeguard the splicing of genes in high demand in scenarios requiring increased cell proliferation (brain development and GBM growth), ensuring efficient cell division, cell cycle regulation, and gene expression (splicing and translation). Since differentiated neuronal cells do not require increased MAGOH/MAGOHB expression, targeting these paralogs is a potential option for treating GBM.


Assuntos
Genes cdc , Glioblastoma , Humanos , Splicing de RNA , Divisão Celular , Núcleo Celular/metabolismo , Glioblastoma/metabolismo , Proteínas Nucleares/metabolismo
5.
Cancers (Basel) ; 15(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37370684

RESUMO

Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults, with a 5-year overall survival rate of approximately 30%. Despite recent advances in therapeutic options, relapse remains the leading cause of death and poor survival outcomes. New drugs benefit specific small subgroups of patients with actionable therapeutic targets. Thus, finding new targets with greater applicability should be pursued. Olfactory receptors (ORs) are seven transmembrane G-protein coupled receptors preferentially expressed in sensory neurons with a critical role in recognizing odorant molecules. Recent studies have revealed ectopic expression and putative function of ORs in nonolfactory tissues and pathologies, including AML. Here, we investigated OR expression in 151 AML samples, 6400 samples of 15 other cancer types, and 11,200 samples of 51 types of healthy tissues. First, we identified 19 ORs with a distinct and major expression pattern in AML, which were experimentally validated by RT-PCR in an independent set of 13 AML samples, 13 healthy donors, and 8 leukemia cell lines. We also identified an OR signature with prognostic potential for AML patients. Finally, we found cancer-related genes coexpressed with the ORs in the AML samples. In summary, we conducted an extensive study to identify ORs that can be used as novel biomarkers for the diagnosis of AML and as potential drug targets.

6.
Neuro Oncol ; 25(3): 459-470, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35862252

RESUMO

BACKGROUND: The loss of neurogenic tumor suppressor microRNAs miR-124, miR-128, and miR-137 is associated with glioblastoma's undifferentiated state. Most of their impact comes via the repression of a network of oncogenic transcription factors. We conducted a high-throughput functional siRNA screen in glioblastoma cells and identify E74 like ETS transcription factor 4 (ELF4) as the leading contributor to oncogenic phenotypes. METHODS: In vitro and in vivo assays were used to assess ELF4 impact on cancer phenotypes. We characterized ELF4's mechanism of action via genomic and lipidomic analyses. A MAPK reporter assay verified ELF4's impact on MAPK signaling, and qRT-PCR and western blotting were used to corroborate ELF4 regulatory role on most relevant target genes. RESULTS: ELF4 knockdown resulted in significant proliferation delay and apoptosis in GBM cells and long-term growth delay and morphological changes in glioma stem cells (GSCs). Transcriptomic analyses revealed that ELF4 controls two interlinked pathways: 1) Receptor tyrosine kinase signaling and 2) Lipid dynamics. ELF4 modulation directly affected receptor tyrosine kinase (RTK) signaling, as mitogen-activated protein kinase (MAPK) activity was dependent upon ELF4 levels. Furthermore, shotgun lipidomics revealed that ELF4 depletion disrupted several phospholipid classes, highlighting ELF4's importance in lipid homeostasis. CONCLUSIONS: We found that ELF4 is critical for the GBM cell identity by controlling genes of two dependent pathways: RTK signaling (SRC, PTK2B, and TNK2) and lipid dynamics (LRP1, APOE, ABCA7, PLA2G6, and PITPNM2). Our data suggest that targeting these two pathways simultaneously may be therapeutically beneficial to GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , MicroRNAs , Humanos , Fatores de Transcrição/genética , Glioblastoma/patologia , MicroRNAs/genética , Receptores Proteína Tirosina Quinases/genética , Regulação Neoplásica da Expressão Gênica , Lipídeos , Proliferação de Células , Linhagem Celular Tumoral , Neoplasias Encefálicas/patologia , Proteínas de Ligação a DNA/genética , Proteínas Tirosina Quinases/metabolismo
7.
Angiogenesis ; 26(1): 129-166, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36183032

RESUMO

Cancer cells are embedded within the tissue and interact dynamically with its components during cancer progression. Understanding the contribution of cellular components within the tumor microenvironment is crucial for the success of therapeutic applications. Here, we reveal the presence of perivascular GFAP+/Plp1+ cells within the tumor microenvironment. Using in vivo inducible Cre/loxP mediated systems, we demonstrated that these cells derive from tissue-resident Schwann cells. Genetic ablation of endogenous Schwann cells slowed down tumor growth and angiogenesis. Schwann cell-specific depletion also induced a boost in the immune surveillance by increasing tumor-infiltrating anti-tumor lymphocytes, while reducing immune-suppressor cells. In humans, a retrospective in silico analysis of tumor biopsies revealed that increased expression of Schwann cell-related genes within melanoma was associated with improved survival. Collectively, our study suggests that Schwann cells regulate tumor progression, indicating that manipulation of Schwann cells may provide a valuable tool to improve cancer patients' outcomes.


Assuntos
Neoplasias , Neuroglia , Humanos , Estudos Retrospectivos , Neuroglia/metabolismo , Células de Schwann/metabolismo , Células de Schwann/patologia , Pericitos , Microambiente Tumoral/fisiologia , Neoplasias/patologia
8.
Cancers (Basel) ; 14(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36358851

RESUMO

Purpose: Solid tumors harboring tumor mutational burden (TMB) ≥10 mutations per megabase (mut/Mb) received agnostic approval for pembrolizumab. This work aims to analyze the somatic mutational profile's influence on the outcomes of patients with TMB-high tumors treated with immune checkpoint inhibitors (ICIs). Methods: This post-hoc analysis evaluated clinical and molecular features of patients with solid tumors treated with ICIs that could be either monoclonal antibody directed against programmed cell death protein-1 or monoclonal antibody directed against programmed cell death ligand 1 (anti-PD-1/anti-PD-L1), monoclonal antibody directed against cytotoxic T lymphocyte-associated antigen (anti-CTLA-4) or a combined treatment regimen including one anti-PD-1/anti-PD-L1 and one anti-CTLA-4 (ICIs combination). We performed OS analysis for TMB thresholds of ≥10, ≥20, and <10 mut/Mb. We assessed OS according to the mutational profile for a TMB ≥ 10 mut/Mb cutoff. For genes correlated with OS at the univariate assessment, we conducted a Cox multivariate analysis adjusted by median TMB, sex, age, microsatellite instability (MSI), and histology. Results: A total of 1661 patients were investigated; 488 with a TMB ≥10 mut/Mb (29.4%). The median OS was 42 months for TMB ≥10 or 20 mut/Mb, and 15 months for TMB <10 mut/Mb (p < 0.005). Among TMB ≥10 mut/Mb patients, mutations in E2F3 or STK11 correlated with worse OS, and mutations in NTRK3, PTPRD, RNF43, TENT5C, TET1, or ZFHX3 with better OS. These associations were confirmed with univariate and multivariate analyses (p < 0.05). Melanoma histology and TMB above the median endowed patients with better OS (p < 0.05), while MSI status, age, and gender did not have a statistically significant effect on OS. Conclusion: Combining TMB and mutation profiles in key cancer genes can better qualify patients for ICI treatment and predict their OS.

9.
Mol Oncol ; 16(22): 3975-3993, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36217307

RESUMO

The THRA gene, encoding the thyroid hormone nuclear receptor TRα1, is expressed in an increasing gradient at the bottom of intestinal crypts, overlapping with high Wnt and Notch activities. Importantly, THRA is upregulated in colorectal cancers, particularly in the high-Wnt molecular subtype. The basis of this specific and/or altered expression pattern has remained unknown. To define the mechanisms controlling THRA transcription and TRα1 expression, we used multiple in vitro and ex vivo approaches. Promoter analysis demonstrated that transcription factors important for crypt homeostasis and altered in colorectal cancers, such as transcription factor 7-like 2 (TCF7L2; Wnt pathway), recombining binding protein suppressor of hairless (RBPJ; Notch pathway), and homeobox protein CDX2 (epithelial cell identity), modulate THRA activity. Specifically, although TCF7L2 and CDX2 stimulated THRA, RBPJ induced its repression. In-depth analysis of the Wnt-dependent increase showed direct regulation of the THRA promoter in cells and of TRα1 expression in murine enteroids. Given our previous results on the control of the Wnt pathway by TRα1, our new results unveil a complex regulatory loop and synergy between these endocrine and epithelial-cell-intrinsic signals. Our work describes, for the first time, the regulation of the THRA gene in specific cell and tumor contexts.


Assuntos
Neoplasias Colorretais , Genes erbA , Humanos , Camundongos , Animais , Receptores dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/metabolismo , Neoplasias Colorretais/genética
10.
ACS Omega ; 7(35): 30700-30709, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068861

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is evolving with mutations in the spike protein, especially in the receptor-binding domain (RBD). The failure of public health measures in some countries to contain the spread of the disease has given rise to novel viral variants with increased transmissibility. However, key questions about how quickly the variants can spread remain unclear. Herein, we performed a structural investigation using molecular dynamics simulations and determined dissociation constant (K D) values using surface plasmon resonance assays of three fast-spreading SARS-CoV-2 variants, alpha, beta, and gamma, as well as genetic factors in host cells that may be related to the viral infection. Our results suggest that the SARS-CoV-2 variants facilitate their entry into the host cell by moderately increased binding affinities to the human ACE2 receptor, different torsions in hACE2 mediated by RBD variants, and an increased spike exposure time to proteolytic enzymes. We also found that other host cell aspects, such as gene and isoform expression of key genes for the infection (ACE2, FURIN, and TMPRSS2), may have few contributions to the SARS-CoV-2 variant infectivity. In summary, we concluded that a combination of viral and host cell factors allows SARS-CoV-2 variants to increase their abilities to spread faster than the wild type.

11.
Viruses ; 14(4)2022 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-35458557

RESUMO

Novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) are constantly threatening global public health. With no end date, the pandemic persists with the emergence of novel variants that threaten the effectiveness of diagnostic tests and vaccines. Mutations in the Spike surface protein of the virus are regularly observed in the new variants, potentializing the emergence of novel viruses with different tropism from the current ones, which may change the severity and symptoms of the disease. Growing evidence has shown that mutations are being selected in favor of variants that are more capable of evading the action of neutralizing antibodies. In this context, the most important factor guiding the evolution of SARS-CoV-2 is its interaction with the host's immune system. Thus, as current vaccines cannot block the transmission of the virus, measures complementary to vaccination, such as the use of masks, hand hygiene, and keeping environments ventilated remain essential to delay the emergence of new variants. Importantly, in addition to the involvement of the immune system in the evolution of the virus, we highlight several chemical parameters that influence the molecular interactions between viruses and host cells during invasion and are also critical tools making novel variants more transmissible. In this review, we dissect the impacts of the Spike mutations on biological parameters such as (1) the increase in Spike binding affinity to hACE2; (2) bound time for the receptor to be cleaved by the proteases; (3) how mutations associate with the increase in RBD up-conformation state in the Spike ectodomain; (4) expansion of uncleaved Spike protein in the virion particles; (5) increment in Spike concentration per virion particles; and (6) evasion of the immune system. These factors play key roles in the fast spreading of SARS-CoV-2 variants of concern, including the Omicron.


Assuntos
Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , COVID-19/prevenção & controle , COVID-19/virologia , Humanos , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
12.
Acta Neuropathol Commun ; 9(1): 183, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34784974

RESUMO

Sensory neurons have recently emerged as components of the tumor microenvironment. Nevertheless, whether sensory neuronal activity is important for tumor progression remains unknown. Here we used Designer Receptors Exclusively Activated by a Designer Drug (DREADD) technology to inhibit or activate sensory neurons' firing within the melanoma tumor. Melanoma growth and angiogenesis were accelerated following inhibition of sensory neurons' activity and were reduced following overstimulation of these neurons. Sensory neuron-specific overactivation also induced a boost in the immune surveillance by increasing tumor-infiltrating anti-tumor lymphocytes, while reducing immune-suppressor cells. In humans, a retrospective in silico analysis of melanoma biopsies revealed that increased expression of sensory neurons-related genes within melanoma was associated with improved survival. These findings suggest that sensory innervations regulate melanoma progression, indicating that manipulation of sensory neurons' activity may provide a valuable tool to improve melanoma patients' outcomes.


Assuntos
Melanoma/genética , Melanoma/patologia , Células Receptoras Sensoriais/patologia , Animais , Comportamento Animal/efeitos dos fármacos , Biópsia , Linhagem Celular Tumoral , Simulação por Computador , Progressão da Doença , Humanos , Vigilância Imunológica , Linfócitos/patologia , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Células Receptoras Sensoriais/metabolismo , Fatores Supressores Imunológicos , Microambiente Tumoral
13.
NAR Cancer ; 3(2): zcab024, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34316711

RESUMO

Nowadays, the massive amount of data generated by modern sequencing technologies provides an unprecedented opportunity to find genes associated with cancer patient prognosis, connecting basic and translational research. However, treating high dimensionality of gene expression data and integrating it with clinical variables are major challenges to perform these analyses. Here, we present Reboot, an integrative approach to find and validate genes and transcripts (splicing isoforms) associated with cancer patient prognosis from high dimensional expression datasets. Reboot innovates by using a multivariate strategy with penalized Cox regression (LASSO method) combined with a bootstrap approach, in addition to statistical tests and plots to support the findings. Applying Reboot on data from 154 glioblastoma patients, we identified a three-gene signature (IKBIP, OSMR, PODNL1) whose increased derived risk score was significantly associated with worse patients' prognosis. Similarly, Reboot was able to find a seven-splicing isoforms signature related to worse overall survival in 177 pancreatic adenocarcinoma patients with elevated risk scores after uni- and multivariate analyses. In summary, Reboot is an efficient, intuitive and straightforward way of finding genes or splicing isoforms signatures relevant to patient prognosis, which can democratize this kind of analysis and shed light on still under-investigated cancer-related genes and splicing isoforms.

14.
Cancer Res ; 81(10): 2730-2744, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33741693

RESUMO

Intestinal crypts are composed of heterogeneous and highly plastic cell populations. Lgr5high-stem cells (SC) are responsible for homeostatic renewal, but other cells can revert to an SC-like phenotype to maintain epithelial integrity. Despite their distinct roles in orchestrating homeostasis, both populations have been designated as the putative "cell-of-origin" of colorectal cancer. However, their respective involvement in the emergence of drug-resistant cancer SCs (CSC), responsible for tumor relapse and associated with poor outcome of colorectal cancer, remains elusive. In this context, the intestinal SC/progenitor-marker Musashi1 (MSI1) is interesting as it plays important functions in intestinal homeostasis and is frequently overexpressed in human colorectal cancer. Therefore, our aims were: (i) to study the impact of chemotherapy on Lgr5-expressing and MSI1-expressing cell populations, (ii) to explore the effect of increased MSI1 levels in response to treatment, and (iii) to evaluate the relevance in human colorectal cancer. Engineered mouse models treated with the therapeutic agent 5-fluorouracil showed that upon increased MSI1 levels, Lgr5high SCs remain sensitive while Lgr5low progenitors reprogram to a drug-resistant phenotype. This resulted in the expansion of an MSI1-expressing cell subpopulation with improved resistance to DNA damage and increased detoxification, typical properties of dormant-CSCs that can reactivate after chemotherapy. Analysis in patients with colorectal cancer revealed a correlation between MSI1 levels and tumor grading, CSC phenotype, and chemoresistance. Altogether, these results shed new light on the biology and plasticity of normal crypt and cancer cell populations and also open new perspectives to target MSI1 to improve chemotherapy outcome. SIGNIFICANCE: This study unveils paradoxical roles for MSI1, underlining its importance in facilitating intestinal regeneration upon injury but also unraveling its new function in drug-resistant colorectal cancer stem cells.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Animais , Antimetabólitos Antineoplásicos/farmacologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Feminino , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas do Tecido Nervoso/genética , Fenótipo , Proteínas de Ligação a RNA/genética
15.
Cancers (Basel) ; 13(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466745

RESUMO

Tumor suppressor microRNAs (miRNAs) have been explored as agents to target cancer stem cells. Most strategies use a single miRNA mimic and present many disadvantages, such as the amount of reagent required and the diluted effect on target genes. miRNAs work in a cooperative fashion to regulate distinct biological processes and pathways. Therefore, we propose that miRNA combinations could provide more efficient ways to target cancer stem cells. We have previously shown that miR-124, miR-128, and miR-137 function synergistically to regulate neurogenesis. We used a combination of these three miRNAs to treat glioma stem cells and showed that this treatment was much more effective than single miRNAs in disrupting cell proliferation and survival and promoting differentiation and response to radiation. Transcriptomic analyses indicated that transcription regulation, angiogenesis, metabolism, and neuronal differentiation are among the main biological processes affected by transfection of this miRNA combination. In conclusion, we demonstrated the value of using combinations of neurogenic miRNAs to disrupt cancer phenotypes and glioma stem cell growth. The synergistic effect of these three miRNA amplified the repression of oncogenic factors and the effect on cancer relevant pathways. Future therapeutic approaches would benefit from utilizing miRNA combinations, especially when targeting cancer-initiating cell populations.

16.
Cells ; 11(1)2021 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-35011618

RESUMO

Medulloblastoma is the most common malignant brain tumor in children. Treatment with surgery, irradiation, and chemotherapy has improved survival in recent years, but patients are frequently left with devastating neurocognitive and other sequelae. Patients in molecular subgroups 3 and 4 still experience a high mortality rate. To identify new pathways contributing to medulloblastoma development and create new routes for therapy, we have been studying oncogenic RNA-binding proteins. We defined Musashi1 (Msi1) as one of the main drivers of medulloblastoma development. The high expression of Msi1 is prevalent in Group 4 and correlates with poor prognosis while its knockdown disrupted cancer-relevant phenotypes. Genomic analyses (RNA-seq and RIP-seq) indicated that cell cycle and division are the main biological categories regulated by Msi1 in Group 4 medulloblastoma. The most prominent Msi1 targets include CDK2, CDK6, CCND1, CDKN2A, and CCNA1. The inhibition of Msi1 with luteolin affected the growth of CHLA-01 and CHLA-01R Group 4 medulloblastoma cells and a synergistic effect was observed when luteolin and the mitosis inhibitor, vincristine, were combined. These findings indicate that a combined therapeutic strategy (Msi1 + cell cycle/division inhibitors) could work as an alternative to treat Group 4 medulloblastoma.


Assuntos
Ciclo Celular/genética , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Regulação Neoplásica da Expressão Gênica , Meduloblastoma/genética , Meduloblastoma/patologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Luteolina/farmacologia , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Fenótipo , Prognóstico , Vincristina/farmacologia , Quinases da Família src/metabolismo
17.
Genome Biol ; 21(1): 195, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32762776

RESUMO

BACKGROUND: RNA-binding proteins (RBPs) function as master regulators of gene expression. Alterations in RBP expression and function are often observed in cancer and influence critical pathways implicated in tumor initiation and growth. Identification and characterization of oncogenic RBPs and their regulatory networks provide new opportunities for targeted therapy. RESULTS: We identify the RNA-binding protein SERBP1 as a novel regulator of glioblastoma (GBM) development. High SERBP1 expression is prevalent in GBMs and correlates with poor patient survival and poor response to chemo- and radiotherapy. SERBP1 knockdown causes delay in tumor growth and impacts cancer-relevant phenotypes in GBM and glioma stem cell lines. RNAcompete identifies a GC-rich region as SERBP1-binding motif; subsequent genomic and functional analyses establish SERBP1 regulation role in metabolic routes preferentially used by cancer cells. An important consequence of these functions is SERBP1 impact on methionine production. SERBP1 knockdown decreases methionine levels causing a subsequent reduction in histone methylation as shown for H3K27me3 and upregulation of genes associated with neurogenesis, neuronal differentiation, and function. Further analysis demonstrates that several of these genes are downregulated in GBM, potentially through epigenetic silencing as indicated by the presence of H3K27me3 sites. CONCLUSIONS: SERBP1 is the first example of an RNA-binding protein functioning as a central regulator of cancer metabolism and indirect modulator of epigenetic regulation in GBM. By bridging these two processes, SERBP1 enhances glioma stem cell phenotypes and contributes to GBM poorly differentiated state.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Neoplasias Encefálicas/etiologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/terapia , Epigênese Genética , Feminino , Glioblastoma/etiologia , Glioblastoma/mortalidade , Glioblastoma/terapia , Humanos , Masculino , Camundongos , Neurogênese , Fenótipo , Prognóstico , Estados Unidos/epidemiologia
18.
NPJ Genom Med ; 5: 2, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31969990

RESUMO

Therapy resistance and recurrence in high-grade gliomas are driven by their populations of glioma stem cells (GSCs). Thus, detailed molecular characterization of GSCs is needed to develop more effective therapies. We conducted a study to identify differences in the splicing profile and expression of long non-coding RNAs in proneural and mesenchymal GSC cell lines. Genes related to cell cycle, DNA repair, cilium assembly, and splicing showed the most differences between GSC subgroups. We also identified genes distinctly associated with survival among patients of mesenchymal or proneural subgroups. We determined that multiple long non-coding RNAs with increased expression in mesenchymal GSCs are associated with poor survival of glioblastoma patients. In summary, our study established critical differences between proneural and mesenchymal GSCs in splicing profiles and expression of long non-coding RNA. These splicing isoforms and lncRNA signatures may contribute to the uniqueness of GSC subgroups, thus contributing to cancer phenotypes and explaining differences in therapeutic responses.

19.
RNA ; 25(7): 768-782, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31004009

RESUMO

RNA-binding proteins (RBPs) and miRNAs are critical gene expression regulators that interact with one another in cooperative and antagonistic fashions. We identified Musashi1 (Msi1) and miR-137 as regulators of a molecular switch between self-renewal and differentiation. Msi1 and miR-137 have opposite expression patterns and functions, and Msi1 is repressed by miR-137. Msi1 is a stem-cell protein implicated in self-renewal while miR-137 functions as a proneuronal differentiation miRNA. In gliomas, miR-137 functions as a tumor suppressor while Msi1 is a prooncogenic factor. We suggest that the balance between Msi1 and miR-137 is a key determinant in cell fate decisions and disruption of this balance could contribute to neurodegenerative diseases and glioma development. Genomic analyses revealed that Msi1 and miR-137 share 141 target genes associated with differentiation, development, and morphogenesis. Initial results pointed out that these two regulators have an opposite impact on the expression of their target genes. Therefore, we propose an antagonistic model in which this network of shared targets could be either repressed by miR-137 or activated by Msi1, leading to different outcomes (self-renewal, proliferation, tumorigenesis).


Assuntos
Diferenciação Celular , Transformação Celular Neoplásica/patologia , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , MicroRNAs/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Proteínas de Ligação a RNA/metabolismo , Animais , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Células Tumorais Cultivadas
20.
J Biomed Inform ; 66: 116-128, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28057566

RESUMO

Gene expression studies often require the combined use of a number of analysis tools. However, manual integration of analysis tools can be cumbersome and error prone. To support a higher level of automation in the integration process, efforts have been made in the biomedical domain towards the development of semantic web services and supporting composition environments. Yet, most environments consider only the execution of simple service behaviours and requires users to focus on technical details of the composition process. We propose a novel approach to the semantic composition of gene expression analysis services that addresses the shortcomings of the existing solutions. Our approach includes an architecture designed to support the service composition process for gene expression analysis, and a flexible strategy for the (semi) automatic composition of semantic web services. Finally, we implement a supporting platform called SemanticSCo to realize the proposed composition approach and demonstrate its functionality by successfully reproducing a microarray study documented in the literature. The SemanticSCo platform provides support for the composition of RESTful web services semantically annotated using SAWSDL. Our platform also supports the definition of constraints/conditions regarding the order in which service operations should be invoked, thus enabling the definition of complex service behaviours. Our proposed solution for semantic web service composition takes into account the requirements of different stakeholders and addresses all phases of the service composition process. It also provides support for the definition of analysis workflows at a high-level of abstraction, thus enabling users to focus on biological research issues rather than on the technical details of the composition process. The SemanticSCo source code is available at https://github.com/usplssb/SemanticSCo.


Assuntos
Sistemas Computacionais , Perfilação da Expressão Gênica , Semântica , Software , Genômica , Linguagens de Programação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...