Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ear Hear ; 42(4): 832-845, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33886169

RESUMO

OBJECTIVE: As humans age, compressive nonlinearity-a hallmark of healthy cochlear function-changes. The nonlinear distortion-component of the distortion product otoacoustic emission (DPOAE) provides a noninvasive gauge of cochlear nonlinearity. Earlier published work has suggested that weakened nonlinearity begins in middle age; the current work extends this investigation into the eight decade of life using advanced DPOAE data collection and analysis methods as well as multiple metrics of nonlinearity, including a test of loudness scaling. DESIGN: The 2f1-f2 DPOAE was recorded in 20 young adults, 25 middle-aged adults and 32 older adults from f2 = 0.78 to 9.4 kHz with primary tones (f2/f1 = 1.22) swept upward at a rate of 0.5 octave/sec. Only frequencies with audiometric thresholds ≤20 dB HL were included in the analysis and to the extent possible, ears were audiometrically matched to eliminate hearing threshold as a contributing factor to the observed age effects. Input/output functions were generated for the separated distortion-component of the DPOAE to probe compressive nonlinearity of the cochlea, and ipsilateral suppression of the DPOAE was conducted to probe two-tone suppression. To investigate the perceptual effects of weakening nonlinearity on loudness perception, the same subjects performed categorical loudness scaling. Age effects on both DPOAE and loudness scaling variables were assessed, and correlations were conducted between key OAE and perceptual metrics. RESULTS: Age × Frequency ANOVAs revealed that the compression knee of the DPOAE I/O function occurred at higher stimulus levels in both groups of older adults compared to young adults, suggesting an expanded linear range with aging; also, the compressive slope (growth beyond the knee point) was steeper in older-adults compared to young adults. These results were most notable at high frequencies. ANOVAs including age and auditory threshold as factors confirmed that the age effect observed was independent of threshold. Additionally, in smaller subsets of subjects with audiometrically matched data, these same trends persisted, further ruling out hearing threshold as an influential factor. The growth of DPOAE ipsilateral suppression was shallower near 4 kHz in middle-aged and older adults compared to young adults and elevated suppression thresholds were observed. Results of categorical loudness scaling showed steeper growth of loudness for older adults and, at fixed sensation levels (dB SL), the older-adult group rated tones as louder than did their young-adult counterparts, suggesting abnormal loudness growth and perception. Several correlations between the compression knee of the DPOAE I/O function and key metrics of loudness scaling were significant and accounted for up to one-third of the variance. CONCLUSIONS: Results indicate that the aging cochlea begins to show weakened nonlinearity in middle age and it progressively weakens further into senescence. The perceptual impact of weakened nonlinearity during aging is manifested as abnormal loudness judgments; that is, in older-adult ears, a tone considered comfortable or medium in young-adult ears can be considered loud. The biophysical origin of this weakened nonlinearity is not known. It is hypothesized to reflect aging-related damage to, or loss of, outer hair cells and their stereocilia. More work is warranted to better define the perceptual impact of a linearized cochlear response in older adults and to consider how this deficit might impact the fitting of hearing aids and other intervention strategies.


Assuntos
Cóclea , Emissões Otoacústicas Espontâneas , Idoso , Envelhecimento , Limiar Auditivo , Células Ciliadas Auditivas Externas , Humanos , Pessoa de Meia-Idade , Adulto Jovem
2.
J Acoust Soc Am ; 143(1): 181, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29390734

RESUMO

Stimulus-frequency otoacoustic emissions (SFOAEs) are reflection-source emissions, and are the least familiar and perhaps most underutilized otoacoustic emission. Here, normative SFOAE data are presented from a large group of 48 young adults at probe levels from 20 to 60 dB sound pressure level (SPL) across a four-octave frequency range to characterize the typical SFOAE and describe recent methodological advances that have made its measurement more efficient. In young-adult ears, SFOAE levels peaked in the low-to-mid frequencies at mean levels of ∼6-7 dB SPL while signal-to-noise ranged from 23 to 34 dB SPL and test-retest reliability was ±4 dB for 90% of the SFOAE data. On average, females had ∼2.5 dB higher SFOAE levels than males. SFOAE input/output functions showed near linear growth at low levels and a compression threshold averaging 35 dB SPL across frequency. SFOAE phase accumulated ∼32-36 cycles across four octaves on average, and showed level effects when converted to group delay: low-level probes produced longer SFOAE delays. A "break" in the normalized SFOAE delay was observed at 1.1 kHz on average, elucidating the location of the putative apical-basal transition. Technical innovations such as the concurrent sweeping of multiple frequency segments, post hoc suppressor decontamination, and a post hoc artifact-rejection technique were tested.


Assuntos
Estimulação Acústica/métodos , Vias Auditivas/fisiologia , Emissões Otoacústicas Espontâneas , Adolescente , Adulto , Fatores Etários , Limiar Auditivo , Feminino , Humanos , Masculino , Pressão , Fatores Sexuais , Som , Espectrografia do Som , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA