Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 79(8): 424, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35841449

RESUMO

Cardiac fibroblast (CF) population heterogeneity and plasticity present a challenge for categorization of biological and functional properties. Distinct molecular markers and associated signaling pathways provide valuable insight for CF biology and interventional strategies to influence injury response and aging-associated remodeling. Receptor tyrosine kinase c-Kit mediates cell survival, proliferation, migration, and is activated by pathological injury. However, the biological significance of c-Kit within CF population has not been addressed. An inducible reporter mouse detects c-Kit promoter activation with Enhanced Green Fluorescent Protein (EGFP) expression in cardiac cells. Coincidence of EGFP and c-Kit with the DDR2 fibroblast marker was confirmed using flow cytometry and immunohistochemistry. Subsequently, CFs expressing DDR2 with or without c-Kit was isolated and characterized. A subset of DDR2+ CFs also express c-Kit with coincidence in ~ 8% of total cardiac interstitial cells (CICs). Aging is associated with decreased number of c-Kit expressing DDR2+ CFs, whereas pathological injury induces c-Kit and DDR2 as well as the frequency of coincident expression in CICs. scRNA-Seq profiling reveals the transcriptome of c-Kit expressing CFs as cells with transitional phenotype. Cultured cardiac DDR2+ fibroblasts that are c-Kit+ exhibit morphological and functional characteristics consistent with youthful phenotypes compared to c-Kit- cells. Mechanistically, c-Kit expression correlates with signaling implicated in proliferation and cell migration, including phospho-ERK and pro-caspase 3. The phenotype of c-kit+ on DDR2+ CFs correlates with multiple characteristics of 'youthful' cells. To our knowledge, this represents the first evaluation of c-Kit biology within DDR2+ CF population and provides a fundamental basis for future studies to influence myocardial biology, response to pathological injury and physiological aging.


Assuntos
Animais , Fibroblastos/metabolismo , Camundongos , Fenótipo , Proteínas Proto-Oncogênicas c-kit/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo
3.
Cardiovasc Res ; 117(1): 201-211, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32176281

RESUMO

AIMS: Telomere attrition in cardiomyocytes is associated with decreased contractility, cellular senescence, and up-regulation of proapoptotic transcription factors. Pim1 is a cardioprotective kinase that antagonizes the aging phenotype of cardiomyocytes and delays cellular senescence by maintaining telomere length, but the mechanism remains unknown. Another pathway responsible for regulating telomere length is the transforming growth factor beta (TGFß) signalling pathway where inhibiting TGFß signalling maintains telomere length. The relationship between Pim1 and TGFß has not been explored. This study delineates the mechanism of telomere length regulation by the interplay between Pim1 and components of TGFß signalling pathways in proliferating A549 cells and post-mitotic cardiomyocytes. METHODS AND RESULTS: Telomere length was maintained by lentiviral-mediated overexpression of PIM1 and inhibition of TGFß signalling in A549 cells. Telomere length maintenance was further demonstrated in isolated cardiomyocytes from mice with cardiac-specific overexpression of PIM1 and by pharmacological inhibition of TGFß signalling. Mechanistically, Pim1 inhibited phosphorylation of Smad2, preventing its translocation into the nucleus and repressing expression of TGFß pathway genes. CONCLUSION: Pim1 maintains telomere lengths in cardiomyocytes by inhibiting phosphorylation of the TGFß pathway downstream effectors Smad2 and Smad3, which prevents repression of telomerase reverse transcriptase. Findings from this study demonstrate a novel mechanism of telomere length maintenance and provide a potential target for preserving cardiac function.


Assuntos
Senescência Celular/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Homeostase do Telômero/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Células A549 , Animais , Humanos , Masculino , Camundongos Knockout , Miócitos Cardíacos/enzimologia , Fosforilação , Proteínas Proto-Oncogênicas c-pim-1/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Telomerase/metabolismo
4.
Cells ; 9(9)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878131

RESUMO

Enhancing cardiomyocyte survival is crucial to blunt deterioration of myocardial structure and function following pathological damage. PIM1 (Proviral Insertion site in Murine leukemia virus (PIM) kinase 1) is a cardioprotective serine threonine kinase that promotes cardiomyocyte survival and antagonizes senescence through multiple concurrent molecular signaling cascades. In hematopoietic stem cells, PIM1 interacts with the receptor tyrosine kinase c-Kit upstream of the ERK (Extracellular signal-Regulated Kinase) and Akt signaling pathways involved in cell proliferation and survival. The relationship between PIM1 and c-Kit activity has not been explored in the myocardial context. This study delineates the interaction between PIM1 and c-Kit leading to enhanced protection of cardiomyocytes from stress. Elevated c-Kit expression is induced in isolated cardiomyocytes from mice with cardiac-specific overexpression of PIM1. Co-immunoprecipitation and proximity ligation assay reveal protein-protein interaction between PIM1 and c-Kit. Following treatment with Stem Cell Factor, PIM1-overexpressing cardiomyocytes display elevated ERK activity consistent with c-Kit receptor activation. Functionally, elevated c-Kit expression confers enhanced protection against oxidative stress in vitro. This study identifies the mechanistic relationship between PIM1 and c-Kit in cardiomyocytes, demonstrating another facet of cardioprotection regulated by PIM1 kinase.


Assuntos
Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Animais , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-pim-1/biossíntese , Proteínas Proto-Oncogênicas c-pim-1/genética , Regulação para Cima
5.
Nat Commun ; 11(1): 3955, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32769998

RESUMO

Cellular therapy to treat heart failure is an ongoing focus of intense research, but progress toward structural and functional recovery remains modest. Engineered augmentation of established cellular effectors overcomes impediments to enhance reparative activity. Such 'next generation' implementation includes delivery of combinatorial cell populations exerting synergistic effects. Concurrent isolation and expansion of three distinct cardiac-derived interstitial cell types from human heart tissue, previously reported by our group, prompted design of a 3D structure that maximizes cellular interaction, allows for defined cell ratios, controls size, enables injectability, and minimizes cell loss. Herein, mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs) and c-Kit+ cardiac interstitial cells (cCICs) when cultured together spontaneously form scaffold-free 3D microenvironments termed CardioClusters. scRNA-Seq profiling reveals CardioCluster expression of stem cell-relevant factors, adhesion/extracellular-matrix molecules, and cytokines, while maintaining a more native transcriptome similar to endogenous cardiac cells. CardioCluster intramyocardial delivery improves cell retention and capillary density with preservation of cardiomyocyte size and long-term cardiac function in a murine infarction model followed 20 weeks. CardioCluster utilization in this preclinical setting establish fundamental insights, laying the framework for optimization in cell-based therapeutics intended to mitigate cardiomyopathic damage.


Assuntos
Microambiente Celular , Miocárdio/patologia , Cicatrização , Animais , Animais Recém-Nascidos , Capilares/patologia , Agregação Celular , Morte Celular , Linhagem da Célula , Tamanho Celular , Citoproteção , Células Progenitoras Endoteliais/citologia , Feminino , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Humanos , Processamento de Imagem Assistida por Computador , Recém-Nascido , Células-Tronco Mesenquimais/citologia , Camundongos Endogâmicos NOD , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/citologia , Estresse Oxidativo , Comunicação Parácrina , Ratos Sprague-Dawley , Transcrição Gênica
6.
Trends Cardiovasc Med ; 30(6): 338-343, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31515053

RESUMO

Cardiovascular disease remains the primary cause of death in the United States and in most nations worldwide, despite ongoing intensive efforts to promote cardiac health and treat heart failure. Replacing damaged myocardium represents perhaps the most promising treatment strategy, but also the most challenging given that the adult mammalian heart is notoriously resistant to endogenous repair. Cardiac regeneration following pathologic challenge would require proliferation of surviving tissue, expansion and differentiation of resident progenitors, or transdifferentiation of exogenously applied progenitor cells into functioning myocardium. Adult cardiomyocyte proliferation has been the focus of investigation for decades, recently enjoying a renaissance of interest as a therapeutic strategy for reversing cardiomyocyte loss due in large part to ongoing controversies and frustrations with myocardial cell therapy outcomes. The promise of cardiac cell therapy originated with reports of resident adult cardiac stem cells that could be isolated, expanded and reintroduced into damaged myocardium, producing beneficial effects in preclinical animal models. Despite modest functional improvements, Phase I clinical trials using autologous cardiac derived cells have proven safe and effective, setting the stage for an ongoing multi-center Phase II trial combining autologous cardiac stem cell types to enhance beneficial effects. This overview will examine the history of these two approaches for promoting cardiac repair and attempt to provide context for current and future directions in cardiac regenerative research.


Assuntos
Cardiopatias/cirurgia , Miocárdio/patologia , Miócitos Cardíacos/transplante , Regeneração , Transplante de Células-Tronco , Animais , Diferenciação Celular , Proliferação de Células , Senescência Celular , Cardiopatias/metabolismo , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Humanos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fenótipo , Recuperação de Função Fisiológica , Resultado do Tratamento
7.
Commun Biol ; 2: 205, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231694

RESUMO

Cardiomyocyte ploidy has been described but remains obscure in cardiac interstitial cells. Ploidy of c-kit+ cardiac interstitial cells was assessed using confocal, karyotypic, and flow cytometric technique. Notable differences were found between rodent (rat, mouse) c-kit+ cardiac interstitial cells possessing mononuclear tetraploid (4n) content, compared to large mammals (human, swine) with mononuclear diploid (2n) content. In-situ analysis, confirmed with fresh isolates, revealed diploid content in human c-kit+ cardiac interstitial cells and a mixture of diploid and tetraploid content in mouse. Downregulation of the p53 signaling pathway provides evidence why rodent, but not human, c-kit+ cardiac interstitial cells escape replicative senescence. Single cell transcriptional profiling reveals distinctions between diploid versus tetraploid populations in mouse c-kit+ cardiac interstitial cells, alluding to functional divergences. Collectively, these data reveal notable species-specific biological differences in c-kit+ cardiac interstitial cells, which could account for challenges in extrapolation of myocardial from preclinical studies to clinical trials.


Assuntos
Senescência Celular , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Tetraploidia , Animais , Proliferação de Células , Regulação para Baixo , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Cariotipagem , Leucócitos Mononucleares/citologia , Masculino , Camundongos , Microscopia Confocal , Ploidias , Ratos , Suínos
8.
J Mol Cell Cardiol ; 127: 154-164, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30571978

RESUMO

RATIONALE: Understanding and manipulating the cardiomyocyte cell cycle has been the focus of decades of research, however the ultimate goal of activating mitotic activity in adult mammalian cardiomyocytes remains elusive and controversial. The relentless pursuit of controlling cardiomyocyte mitosis has been complicated and obfuscated by a multitude of indices used as evidence of cardiomyocyte cell cycle activity that lack clear identification of cardiomyocyte "proliferation" versus cell cycle progression, endoreplication, endomitosis, and even DNA damage. Unambiguous appreciation of the complexity of cardiomyocyte replication that avoids oversimplification and misinterpretation is desperately needed. OBJECTIVE: Track cardiomyocyte cell cycle activity and authenticate fidelity of proliferation markers as indicators of de novo cardiomyogenesis in post-mitotic cardiomyocytes. METHODS AND RESULTS: Cardiomyocytes expressing the FUCCI construct driven by the α-myosin heavy chain promoter were readily and uniformly detected through the myocardium of transgenic mice. Cardiomyocyte cell cycle activity peaks at postnatal day 2 and rapidly declines thereafter with almost all cardiomyocytes arrested at the G1/S cell cycle transition. Myocardial infarction injury in adult hearts prompts transient small increases in myocytes progressing through cell cycle without concurrent mitotic activity, indicating lack of cardiomyogenesis. In comparison, cardiomyogenic activity during early postnatal development correlated with coincidence of FUCCI and cKit+ cells that were undetectable in the adult myocardium. CONCLUSIONS: Cardiomyocyte-specific expression of Fluorescence Ubiquitination-based Cell Cycle Indicators (FUCCI) reveals previously unappreciated aspects of cardiomyocyte cell cycle arrest and biological activity in postnatal development and in response to pathologic damage. Compared to many other methods and model systems, the FUCCI transgenic (FUCCI-Tg) mouse represents a valuable tool to unambiguously track cell cycle and proliferation of the entire cardiomyocyte population in the adult murine heart. FUCCI-Tg provides a desperately needed novel approach in the armamentarium of tools to validate cardiomyocyte proliferative activity that will reveal cell cycle progression, discriminate between cycle progression, DNA replication, and proliferation, and provide important insight for enhancing cardiomyocyte proliferation in the context of adult myocardial tissue.


Assuntos
Ciclo Celular , Técnicas de Transferência de Genes , Coração/fisiologia , Miócitos Cardíacos/citologia , Ubiquitinação , Animais , Animais Recém-Nascidos , Pontos de Checagem do Ciclo Celular , Divisão Celular , Proliferação de Células , Células Cultivadas , Fluorescência , Camundongos Transgênicos , Especificidade de Órgãos
9.
Nat Rev Cardiol ; 15(9): 523-542, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30054574

RESUMO

Cardiac ageing manifests as a decline in function leading to heart failure. At the cellular level, ageing entails decreased replicative capacity and dysregulation of cellular processes in myocardial and nonmyocyte cells. Various extrinsic parameters, such as lifestyle and environment, integrate important signalling pathways, such as those involving inflammation and oxidative stress, with intrinsic molecular mechanisms underlying resistance versus progression to cellular senescence. Mitigation of cardiac functional decline in an ageing organism requires the activation of enhanced maintenance and reparative capacity, thereby overcoming inherent endogenous limitations to retaining a youthful phenotype. Deciphering the molecular mechanisms underlying dysregulation of cellular function and renewal reveals potential interventional targets to attenuate degenerative processes at the cellular and systemic levels to improve quality of life for our ageing population. In this Review, we discuss the roles of extrinsic and intrinsic factors in cardiac ageing. Animal models of cardiac ageing are summarized, followed by an overview of the current and possible future treatments to mitigate the deleterious effects of cardiac ageing.


Assuntos
Envelhecimento , Autorrenovação Celular/fisiologia , Senescência Celular/fisiologia , Coração , Miocárdio , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Coração/fisiologia , Coração/fisiopatologia , Humanos , Miocárdio/citologia , Miocárdio/metabolismo
10.
Circ Res ; 123(1): 57-72, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29636378

RESUMO

RATIONALE: Biological significance of c-Kit as a cardiac stem cell marker and role(s) of c-Kit+ cells in myocardial development or response to pathological injury remain unresolved because of varied and discrepant findings. Alternative experimental models are required to contextualize and reconcile discordant published observations of cardiac c-Kit myocardial biology and provide meaningful insights regarding clinical relevance of c-Kit signaling for translational cell therapy. OBJECTIVE: The main objectives of this study are as follows: demonstrating c-Kit myocardial biology through combined studies of both human and murine cardiac cells; advancing understanding of c-Kit myocardial biology through creation and characterization of a novel, inducible transgenic c-Kit reporter mouse model that overcomes limitations inherent to knock-in reporter models; and providing perspective to reconcile disparate viewpoints on c-Kit biology in the myocardium. METHODS AND RESULTS: In vitro studies confirm a critical role for c-Kit signaling in both cardiomyocytes and cardiac stem cells. Activation of c-Kit receptor promotes cell survival and proliferation in stem cells and cardiomyocytes of either human or murine origin. For creation of the mouse model, the cloned mouse c-Kit promoter drives Histone2B-EGFP (enhanced green fluorescent protein; H2BEGFP) expression in a doxycycline-inducible transgenic reporter line. The combination of c-Kit transgenesis coupled to H2BEGFP readout provides sensitive, specific, inducible, and persistent tracking of c-Kit promoter activation. Tagging efficiency for EGFP+/c-Kit+ cells is similar between our transgenic versus a c-Kit knock-in mouse line, but frequency of c-Kit+ cells in cardiac tissue from the knock-in model is 55% lower than that from our transgenic line. The c-Kit transgenic reporter model reveals intimate association of c-Kit expression with adult myocardial biology. Both cardiac stem cells and a subpopulation of cardiomyocytes express c-Kit in uninjured adult heart, upregulating c-Kit expression in response to pathological stress. CONCLUSIONS: c-Kit myocardial biology is more complex and varied than previously appreciated or documented, demonstrating validity in multiple points of coexisting yet heretofore seemingly irreconcilable published findings.


Assuntos
Miocárdio/metabolismo , Miócitos Cardíacos/fisiologia , Proteínas Proto-Oncogênicas c-kit/fisiologia , Células-Tronco/fisiologia , Animais , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Receptores ErbB/metabolismo , Técnicas de Transferência de Genes , Humanos , Camundongos , Camundongos Transgênicos , Modelos Animais , Miocárdio/citologia , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Estresse Fisiológico
11.
Pharmacol Res ; 127: 110-115, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28627370

RESUMO

Stem cell mediated cardiac repair is an exciting and controversial area of cardiovascular research that holds the potential to produce novel, revolutionary therapies for the treatment of heart disease. Extensive investigation to define cell types contributing to cardiac formation, homeostasis and regeneration has produced several candidates, including adult cardiac c-Kit+ expressing stem and progenitor cells that have even been employed in a Phase I clinical trial demonstrating safety and feasibility of this therapeutic approach. However, the field of cardiac cell based therapy remains deeply divided due to strong disagreement among researchers and clinicians over which cell types, if any, are the best candidates for these applications. Research models that identify and define specific cardiac cells that effectively contribute to heart repair are urgently needed to resolve this debate. In this review, current c-Kit reporter models are discussed with respect to myocardial c-Kit cell biology and function, and future designs imagined to better represent endogenous myocardial c-Kit expression.


Assuntos
Coração/fisiologia , Proteínas Proto-Oncogênicas c-kit/fisiologia , Células-Tronco/fisiologia , Animais , Humanos
12.
Circ Res ; 117(8): 695-706, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26228030

RESUMO

RATIONALE: Dual cell transplantation of cardiac progenitor cells (CPCs) and mesenchymal stem cells (MSCs) after infarction improves myocardial repair and performance in large animal models relative to delivery of either cell population. OBJECTIVE: To demonstrate that CardioChimeras (CCs) formed by fusion between CPCs and MSCs have enhanced reparative potential in a mouse model of myocardial infarction relative to individual stem cells or combined cell delivery. METHODS AND RESULTS: Two distinct and clonally derived CCs, CC1 and CC2, were used for this study. CCs improved left ventricular anterior wall thickness at 4 weeks post injury, but only CC1 treatment preserved anterior wall thickness at 18 weeks. Ejection fraction was enhanced at 6 weeks in CCs, and functional improvements were maintained in CCs and CPC+MSC groups at 18 weeks. Infarct size was decreased in CCs, whereas CPC+MSC and CPC parent groups remained unchanged at 12 weeks. CCs exhibited increased persistence, engraftment, and expression of early commitment markers within the border zone relative to combinatorial and individual cell population-injected groups. CCs increased capillary density and preserved cardiomyocyte size in the infarcted regions suggesting CCs role in protective paracrine secretion. CONCLUSIONS: CCs merge the application of distinct cells into a single entity for cellular therapeutic intervention in the progression of heart failure. CCs are a novel cell therapy that improves on combinatorial cell approaches to support myocardial regeneration.


Assuntos
Infarto Miocárdico de Parede Anterior/cirurgia , Ventrículos do Coração/fisiopatologia , Transplante de Células-Tronco Mesenquimais , Miócitos Cardíacos/transplante , Regeneração , Quimeras de Transplante , Animais , Animais Recém-Nascidos , Infarto Miocárdico de Parede Anterior/metabolismo , Infarto Miocárdico de Parede Anterior/patologia , Infarto Miocárdico de Parede Anterior/fisiopatologia , Biomarcadores/metabolismo , Proliferação de Células , Tamanho Celular , Sobrevivência Celular , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Sobrevivência de Enxerto , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Camundongos , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Neovascularização Fisiológica , Comunicação Parácrina , Fenótipo , Ratos , Recuperação de Função Fisiológica , Volume Sistólico , Fatores de Tempo , Transfecção , Função Ventricular Esquerda
13.
J Biol Chem ; 289(9): 5348-56, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24375406

RESUMO

Autologous c-kit(+) cardiac progenitor cells (CPCs) are currently used in the clinic to treat heart disease. CPC-based regeneration may be further augmented by better understanding molecular mechanisms of endogenous cardiac repair and enhancement of pro-survival signaling pathways that antagonize senescence while also increasing differentiation. The prolyl isomerase Pin1 regulates multiple signaling cascades by modulating protein folding and thereby activity and stability of phosphoproteins. In this study, we examine the heretofore unexplored role of Pin1 in CPCs. Pin1 is expressed in CPCs in vitro and in vivo and is associated with increased proliferation. Pin1 is required for cell cycle progression and loss of Pin1 causes cell cycle arrest in the G1 phase in CPCs, concomitantly associated with decreased expression of Cyclins D and B and increased expression of cell cycle inhibitors p53 and retinoblastoma (Rb). Pin1 deletion increases cellular senescence but not differentiation or cell death of CPCs. Pin1 is required for endogenous CPC response as Pin1 knock-out mice have a reduced number of proliferating CPCs after ischemic challenge. Pin1 overexpression also impairs proliferation and causes G2/M phase cell cycle arrest with concurrent down-regulation of Cyclin B, p53, and Rb. Additionally, Pin1 overexpression inhibits replicative senescence, increases differentiation, and inhibits cell death of CPCs, indicating that cell cycle arrest caused by Pin1 overexpression is a consequence of differentiation and not senescence or cell death. In conclusion, Pin1 has pleiotropic roles in CPCs and may be a molecular target to promote survival, enhance repair, improve differentiation, and antagonize senescence.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Senescência Celular/fisiologia , Miocárdio/metabolismo , Peptidilprolil Isomerase/biossíntese , Células-Tronco/metabolismo , Animais , Sobrevivência Celular/fisiologia , Ciclina B/genética , Ciclina B/metabolismo , Ciclina D/genética , Ciclina D/metabolismo , Camundongos , Camundongos Knockout , Miocárdio/citologia , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/genética , Células-Tronco/citologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
14.
Circ Res ; 112(9): 1244-52, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23487407

RESUMO

RATIONALE: Cardiac hypertrophy results from the complex interplay of differentially regulated cascades based on the phosphorylation status of involved signaling molecules. Although numerous critical regulatory kinases and phosphatases have been identified in the myocardium, the intracellular mechanism for temporal regulation of signaling duration and intensity remains obscure. In the nonmyocyte context, control of folding, activity, and stability of proteins is mediated by the prolyl isomerase Pin1, but the role of Pin1 in the heart is unknown. OBJECTIVE: To establish the role of Pin1 in the heart. METHODS AND RESULTS: Here, we show that either genetic deletion or cardiac overexpression of Pin1 blunts hypertrophic responses induced by transaortic constriction and consequent cardiac failure in vivo. Mechanistically, we find that Pin1 directly binds to Akt, mitogen activated protein kinase (MEK), and Raf-1 in cultured cardiomyocytes after hypertrophic stimulation. Furthermore, loss of Pin1 leads to diminished hypertrophic signaling of Akt and MEK, whereas overexpression of Pin1 increases Raf-1 phosphorylation on the autoinhibitory site Ser259, leading to reduced MEK activation. CONCLUSIONS: Collectively, these data support a role for Pin1 as a central modulator of the intensity and duration of 2 major hypertrophic signaling pathways, thereby providing a novel target for regulation and control of cardiac hypertrophy.


Assuntos
Cardiomegalia/enzimologia , Miócitos Cardíacos/enzimologia , Peptidilprolil Isomerase/metabolismo , Transdução de Sinais , Animais , Cardiomegalia/diagnóstico por imagem , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Cardiomegalia/prevenção & controle , Dependovirus/genética , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Miócitos Cardíacos/patologia , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/deficiência , Peptidilprolil Isomerase/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Ratos , Fatores de Tempo , Transdução Genética , Transfecção , Ultrassonografia , Quinases raf/metabolismo
15.
Circ Res ; 111(6): 750-60, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22800687

RESUMO

RATIONALE: Cardiac progenitor cells are important for maintenance of myocardial structure and function, but molecular mechanisms governing these progenitor cells remain obscure and require elucidation to enhance regenerative therapeutic approaches. OBJECTIVE: To understand consequences of stem cell antigen-1 (Sca-1) deletion on functional properties of c-kit+ cardiac progenitor cells and myocardial performance using a Sca-1 knock-out/green fluorescent protein knock-in reporter mouse (ScaKI). METHODS AND RESULTS: Genetic deletion of Sca-1 results in early-onset cardiac contractile deficiency as determined by echocardiography and hemodynamics as well as age-associated hypertrophy. Resident cardiac progenitor cells in ScaKI mice do not respond to pathological damage in vivo, consistent with observations of impaired growth and survival of ScaKI cardiac progenitor cells in vitro. The molecular basis of the defect in ScaKI cardiac progenitor cells is associated with increased canonical Wnt signaling pathway activation consistent with molecular characteristics of lineage commitment. CONCLUSIONS: Genetic deletion of Sca-1 causes primary cardiac defects in myocardial contractility and repair consistent with impairment of resident cardiac progenitor cell proliferative capacity associated with altered canonical Wnt signaling.


Assuntos
Antígenos Ly/metabolismo , Coração/fisiopatologia , Proteínas de Membrana/metabolismo , Miocárdio/metabolismo , Células-Tronco/metabolismo , Animais , Antígenos Ly/genética , Proliferação de Células , Células Cultivadas , Ecocardiografia , Feminino , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipertrofia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Contração Miocárdica/genética , Contração Miocárdica/fisiologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/patologia , Fatores de Tempo , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia , beta Catenina/genética , beta Catenina/metabolismo
16.
Circ Res ; 111(1): 77-86, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22619278

RESUMO

RATIONALE: Bone marrow-derived cells to treat myocardial injury improve cardiac function and support beneficial cardiac remodeling. However, survival of stem cells is limited due to low proliferation of transferred cells. OBJECTIVE: To demonstrate long-term potential of c-kit(+) bone marrow stem cells (BMCs) enhanced with Pim-1 kinase to promote positive cardiac remodeling. METHODS AND RESULTS: Lentiviral modification of c-kit(+) BMCs to express Pim-1 (BMCeP) increases proliferation and expression of prosurvival proteins relative to BMCs expressing green fluorescent protein (BMCe). Intramyocardial delivery of BMCeP at time of infarction supports improvements in anterior wall dimensions and prevents left ventricle dilation compared with hearts treated with vehicle alone. Reduction of the akinetic left ventricular wall was observed in BMCeP-treated hearts at 4 and 12 weeks after infarction. Early recovery of cardiac function in BMCeP-injected hearts facilitated modest improvements in hemodynamic function up to 12 weeks after infarction between cell-treated groups. Persistence of BMCeP is improved relative to BMCe within the infarct together with increased recruitment of endogenous c-kit(+) cells. Delivery of BMC populations promotes cellular hypertrophy in the border and infarcted regions coupled with an upregulation of hypertrophic genes. Thus, BMCeP treatment yields improved structural remodeling of infarcted myocardium compared with control BMCs. CONCLUSIONS: Genetic modification of BMCs with Pim-1 may serve as a therapeutic approach to promote recovery of myocardial structure. Future approaches may take advantage of salutary BMC actions in conjunction with other stem cell types to increase efficacy of cellular therapy and improve myocardial performance in the injured myocardium.


Assuntos
Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Infarto do Miocárdio/cirurgia , Miocárdio/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Regeneração , Engenharia Tecidual , Animais , Apoptose , Células da Medula Óssea/patologia , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/prevenção & controle , Humanos , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Lentivirus/genética , Masculino , Camundongos , Contração Miocárdica , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Fenótipo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Recuperação de Função Fisiológica , Transdução de Sinais , Fatores de Tempo , Engenharia Tecidual/métodos , Transdução Genética , Ultrassonografia , Função Ventricular Esquerda , Remodelação Ventricular
17.
Am J Pathol ; 180(3): 1107-1120, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22214838

RESUMO

Coxsackieviruses are significant human pathogens causing myocarditis, meningitis, and encephalitis. We previously demonstrated the ability of coxsackievirus B3 (CVB3) to persist within the neonatal central nervous system (CNS) and to target neural stem cells. Given that CVB3 is a cytolytic virus and may therefore damage target cells, we characterized the potential reduction in neurogenesis within the developing brain and the subsequent developmental defects that occurred after the loss of these essential neural stem cells. Neonatal mice were inoculated with a recombinant CVB3 expressing eGFP (eGFP-CVB3), and alterations in neurogenesis and brain development were evaluated over time. We observed a reduction in proliferating cells in CNS neurogenic regions simultaneously with the presence of nestin(+) cells undergoing apoptosis. The size of the brain appeared smaller by histology, and a permanent decrease in brain wet weight was observed after eGFP-CVB3 infection. We also observed an inverse relationship between the amount of virus material and brain wet weight up to day 30 postinfection. In addition, signs of astrogliosis and a compaction of the cortical layers were observed at 90 days postinfection. Intriguingly, partial brain wet weight recovery was observed in mice treated with the antiviral drug ribavirin during the persistent stage of infection. Hence, long-term neurological sequelae might be expected after neonatal enteroviral infections, yet antiviral treatment initiated long after the end of acute infection might limit virus-mediated neuropathology.


Assuntos
Sistema Nervoso Central/virologia , Infecções por Coxsackievirus/complicações , Enterovirus Humano B , Células-Tronco Neurais/virologia , Neurogênese/fisiologia , Animais , Animais Recém-Nascidos , Antivirais/farmacologia , Apoptose/fisiologia , Astrócitos/virologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/virologia , Divisão Celular , Proliferação de Células , Sistema Nervoso Central/crescimento & desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Tamanho do Órgão , Proteínas Recombinantes , Carga Viral
18.
J Neurosci ; 30(25): 8676-91, 2010 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-20573913

RESUMO

Enterovirus infection in newborn infants is a significant cause of aseptic meningitis and encephalitis. Using a neonatal mouse model, we previously determined that coxsackievirus B3 (CVB3) preferentially targets proliferating neural stem cells located in the subventricular zone within 24 h after infection. At later time points, immature neuroblasts, and eventually mature neurons, were infected as determined by expression of high levels of viral protein. Here, we show that blood-derived Mac3(+) mononuclear cells were rapidly recruited to the CNS within 12 h after intracranial infection with CVB3. These cells displayed a myeloid-like morphology, were of a peripheral origin based on green fluorescent protein (GFP)-tagged adoptive cell transplant examination, and were highly susceptible to CVB3 infection during their migration into the CNS. Serial immunofluorescence images suggested that the myeloid cells enter the CNS via the choroid plexus, and that they may be infected during their extravasation and passage through the choroid plexus epithelium; these infected myeloid cells ultimately penetrate into the parenchyma of the brain. Before their migration through the ependymal cell layer, a subset of these infected myeloid cells expressed detectable levels of nestin, a marker for neural stem and progenitor cells. As these nestin(+) myeloid cells infected with CVB3 migrated through the ependymal cell layer, they revealed distinct morphological characteristics typical of type B neural stem cells. The recruitment of these novel myeloid cells may be specifically set in motion by the induction of a unique chemokine profile in the CNS induced very early after CVB3 infection, which includes upregulation of CCL12. We propose that intracranial CVB3 infection may lead to the recruitment of nestin(+) myeloid cells into the CNS which might represent an intrinsic host CNS repair response. In turn, the proliferative and metabolic status of recruited myeloid cells may render them attractive targets for CVB3 infection. Moreover, the migratory ability of these myeloid cells may point to a productive method of virus dissemination within the CNS.


Assuntos
Infecções por Coxsackievirus/virologia , Células Mieloides/virologia , Animais , Animais Recém-Nascidos , Plexo Corióideo/imunologia , Plexo Corióideo/virologia , Infecções por Coxsackievirus/imunologia , Imunofluorescência , Hibridização In Situ , Camundongos , Microscopia Confocal , Células Mieloides/imunologia , Neurônios/imunologia , Neurônios/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/imunologia , Células-Tronco/virologia
19.
Circulation ; 121(5): 675-83, 2010 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-20100968

RESUMO

BACKGROUND: The anthracycline doxorubicin is an effective chemotherapeutic agent used to treat pediatric cancers but is associated with cardiotoxicity that can manifest many years after the initial exposure. To date, very little is known about the mechanism of this late-onset cardiotoxicity. METHODS AND RESULTS: To understand this problem, we developed a pediatric model of late-onset doxorubicin-induced cardiotoxicity in which juvenile mice were exposed to doxorubicin, using a cumulative dose that did not induce acute cardiotoxicity. These mice developed normally and had no obvious cardiac abnormalities as adults. However, evaluation of the vasculature revealed that juvenile doxorubicin exposure impaired vascular development, resulting in abnormal vascular architecture in the hearts with less branching and decreased capillary density. Both physiological and pathological stress induced late-onset cardiotoxicity in the adult doxorubicin-treated mice. Moreover, adult mice subjected to myocardial infarction developed rapid heart failure, which correlated with a failure to increase capillary density in the injured area. Progenitor cells participate in regeneration and blood vessel formation after a myocardial infarction, but doxorubicin-treated mice had fewer progenitor cells in the infarct border zone. Interestingly, doxorubicin treatment reduced proliferation and differentiation of the progenitor cells into cells of cardiac lineages. CONCLUSIONS: Our data suggest that anthracycline treatment impairs vascular development as well as progenitor cell function in the young heart, resulting in an adult heart that is more susceptible to stress.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Cardiotoxinas/efeitos adversos , Anomalias dos Vasos Coronários/induzido quimicamente , Doxorrubicina/efeitos adversos , Infarto do Miocárdio/induzido quimicamente , Miocárdio/metabolismo , Células-Tronco/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Antibióticos Antineoplásicos/farmacologia , Cardiotoxinas/farmacologia , Criança , Pré-Escolar , Circulação Coronária/efeitos dos fármacos , Anomalias dos Vasos Coronários/metabolismo , Anomalias dos Vasos Coronários/patologia , Suscetibilidade a Doenças/induzido quimicamente , Suscetibilidade a Doenças/metabolismo , Suscetibilidade a Doenças/patologia , Doxorrubicina/farmacologia , Humanos , Camundongos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/patologia , Neoplasias/tratamento farmacológico , Células-Tronco/patologia
20.
Circulation ; 120(21): 2077-87, 2009 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19901187

RESUMO

BACKGROUND: Despite numerous studies demonstrating the efficacy of cellular adoptive transfer for therapeutic myocardial regeneration, problems remain for donated cells with regard to survival, persistence, engraftment, and long-term benefits. This study redresses these concerns by enhancing the regenerative potential of adoptively transferred cardiac progenitor cells (CPCs) via genetic engineering to overexpress Pim-1, a cardioprotective kinase that enhances cell survival and proliferation. METHODS AND RESULTS: Intramyocardial injections of CPCs overexpressing Pim-1 were given to infarcted female mice. Animals were monitored over 4, 12, and 32 weeks to assess cardiac function and engraftment of Pim-1 CPCs with echocardiography, in vivo hemodynamics, and confocal imagery. CPCs overexpressing Pim-1 showed increased proliferation and expression of markers consistent with cardiogenic lineage commitment after dexamethasone exposure in vitro. Animals that received CPCs overexpressing Pim-1 also produced greater levels of cellular engraftment, persistence, and functional improvement relative to control CPCs up to 32 weeks after delivery. Salutary effects include reduction of infarct size, greater number of c-kit(+) cells, and increased vasculature in the damaged region. CONCLUSIONS: Myocardial repair is significantly enhanced by genetic engineering of CPCs with Pim-1 kinase. Ex vivo gene delivery to enhance cellular survival, proliferation, and regeneration may overcome current limitations of stem cell-based therapeutic approaches.


Assuntos
Engenharia Genética , Terapia Genética , Infarto do Miocárdio/terapia , Miocárdio/citologia , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Transplante de Células-Tronco , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Infarto do Miocárdio/fisiopatologia , Proteínas Proto-Oncogênicas c-kit/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...