Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Educ ; 101(3): 1071-1077, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38495617

RESUMO

Public engagement with science is a core facet of the broader science ecosystem, in particular the science research and science education sectors. In this article we demarcate the benefits of dedicated laboratories along with practitioner advice pertaining to the design and running of a public engagement learning environment. A practicing public engagement laboratory and one that is currently being developed are used as illustrative cases to provide real-world insights to public engagement practitioners.

2.
Commun Chem ; 6(1): 150, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452109

RESUMO

Dynamic photoactuating crystals have become a sensation due to their potential applications in developing smart medical devices, molecular machines, artificial muscles, flexible electronics actuators, probes and microrobots. Here we report the synthesis of two iso-structural metal-organic crystals, [Zn(4-ohbz)2(4-nvp)2] (1) and [Cd(4-ohbz)2(4-nvp)2] (2) {H4-ohbz = 4-hydroxy benzoic acid; 4-nvp = 4-(1-naphthylvinyl)pyridine} which undergo topochemical [2 + 2] cycloaddition under UV irradiation as well as sunlight to generate a dimerized product of discrete metal-complex [Zn(4-ohbz)2(rctt-4-pncb)] {rctt-4-pncb = 1,3-bis(4'-pyridyl)-2,4-bis(naphthyl)cyclobutane} (1') and one-dimensional coordination polymer (1D CP) [Cd(4-ohbz)2(rctt-4-pncb)] (2') respectively, in a single-crystal-to-single-crystal (SCSC) process. The Zn-based compound demonstrates photosalient behaviour, wherein crystals show jumping, splitting, rolling, and swelling upon UV irradiation. However, the Cd-based crystals do not show such behaviour maintaining the initial supramolecular packing and space group. Thus the photomechanical behaviour can be induced by choosing a suitable metal ion. The above findings are thoroughly validated by quantitative density functional theory (DFT) calculations which show that the Zn-based crystal shifts towards an orthorhombic structure to resolve the anisotropic UV-induced mechanical strain. Furthermore, the mechano-structure-property relationship has been established by complimentary nanoindentation measurements, which are in-line with the DFT-predicted single crystal values.

3.
J Am Chem Soc ; 145(28): 15331-15342, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37392396

RESUMO

Variation in the molecular architecture significantly affects the electronic and supramolecular structure of biomolecular assemblies, leading to dramatically altered piezoelectric response. However, relationship between molecular building block chemistry, crystal packing and quantitative electromechanical response is still not fully understood. Herein, we systematically explored the possibility to amplify the piezoelectricity of amino acid-based assemblies by supramolecular engineering. We show that a simple change of side-chain in acetylated amino acids leads to increased polarization of the supramolecular arrangements, resulting in significant enhancement of their piezoelectric response. Moreover, compared to most of the natural amino acid assemblies, chemical modification of acetylation increased the maximum piezoelectric tensors. The predicted maximal piezoelectric strain tensor and voltage constant of acetylated tryptophan (L-AcW) assemblies reach 47 pm V-1 and 1719 mV m/N, respectively, comparable to commonly used inorganic materials such as bismuth triborate crystals. We further fabricated an L-AcW crystal-based piezoelectric power nanogenerator that produces a high and stable open-circuit voltage of over 1.4 V under mechanical pressure. For the first time, the illumination of a light-emitting diode (LED) is demonstrated by the power output of an amino acid-based piezoelectric nanogenerator. This work presents the supramolecular engineering toward the systematic modulation of piezoelectric response in amino acid-based assemblies, facilitating the development of high-performance functional biomaterials from simple, readily available, and easily tailored building blocks.


Assuntos
Aminoácidos , Triptofano , Acetilação , Materiais Biocompatíveis , Bismuto
4.
Small ; 19(46): e2300792, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37485599

RESUMO

Cyclophosphazenes offer a robust and easily modifiable platform for a diverse range of functional systems that have found applications in a wide variety of areas. Herein, for the first time, it reports an organophosphazene-based supramolecular ferroelectric [(PhCH2 NH)6 P3 N3 Me]I, [PMe]I. The compound crystallizes in the polar space group Pc and its thin-film sample exhibits remnant polarization of 5 µC cm-2 . Vector piezoresponse force microscopy (PFM) measurements indicated the presence of multiaxial polarization. Subsequently, flexible composites of [PMe]I are fabricated for piezoelectric energy harvesting applications using thermoplastic polyurethane (TPU) as the matrix. The highest open-circuit voltages of 13.7 V and the maximum power density of 34.60 µW cm-2 are recorded for the poled 20 wt.% [PMe]I/TPU device. To understand the molecular origins of the high performance of [PMe]I-based mechanical energy harvesting devices, piezoelectric charge tensor values are obtained from DFT calculations of the single crystal structure. These indicate that the mechanical stress-induced distortions in the [PMe]I crystals are facilitated by the high flexibility of the layered supramolecular assembly.

5.
J Phys Chem C Nanomater Interfaces ; 127(11): 5533-5543, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36998252

RESUMO

The ability to encode and embed desired mechanical properties into active pharmaceutical ingredient solid forms would significantly advance drug development. In recent years, computational methods, particularly dispersion-corrected density functional theory (DFT), have come of age, opening the possibility of reliably predicting and rationally engineering the mechanical response of molecular crystals. Here, many-body dispersion and Tkatchenko-Scheffler dispersion-corrected DFT were used to calculate the elastic constants of a series of archetypal systems, including paracetamol and aspirin polymorphs and model hydrogen-bonded urea and π-π-bound benzene crystals, establishing their structure-mechanics relations. Both methods showed semiquantitative and excellent qualitative agreement with experiment. The calculations revealed that the plane of maximal Young's modulus generally coincides with extended H-bond or π-π networks, showing how programmable supramolecular packing dictates the mechanical behavior. In a pharmaceutical setting, these structure-mechanics relations can steer the molecular design of solid forms with improved physicochemical and compression properties.

6.
ACS Appl Mater Interfaces ; 14(41): 46827-46840, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36206330

RESUMO

The potential of ultra-short peptides to self-assemble into well-ordered functional nanostructures makes them promising minimal components for mimicking the basic ingredient of nature and diverse biomaterials. However, selection and modular design of perfect de novo sequences are extremely tricky due to their vast possible combinatorial space. Moreover, a single amino acid substitution can drastically alter the supramolecular packing structure of short peptide assemblies. Here, we report the design of rigid hybrid hydrogels produced by sequence engineering of a new series of ultra-short collagen-mimicking tripeptides. Connecting glycine with different combinations of proline and its post-translational product 4-hydroxyproline, the single triplet motif, displays the natural collagen-helix-like structure. Improved mechanical rigidity is obtained via co-assembly with the non-collagenous hydrogelator, fluorenylmethoxycarbonyl (Fmoc) diphenylalanine. Characterizations of the supramolecular interactions that promote the self-supporting and self-healing properties of the co-assemblies are performed by physicochemical experiments and atomistic models. Our results clearly demonstrate the significance of sequence engineering to design functional peptide motifs with desired physicochemical and electromechanical properties and reveal co-assembly as a promising strategy for the utilization of small, readily accessible biomimetic building blocks to generate hybrid biomolecular assemblies with structural heterogeneity and functionality of natural materials.


Assuntos
Hidrogéis , Peptídeos , Hidrogéis/química , Hidroxiprolina , Peptídeos/química , Materiais Biocompatíveis/química , Colágeno , Glicina
7.
J Am Chem Soc ; 144(40): 18375-18386, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36164777

RESUMO

Supramolecular packing dictates the physical properties of bio-inspired molecular assemblies in the solid state. Yet, modulating the stacking modes of bio-inspired supramolecular assemblies remains a challenge and the structure-property relationship is still not fully understood, which hampers the rational design of molecular structures to fabricate materials with desired properties. Herein, we present a co-assembly strategy to modulate the supramolecular packing of N-terminally capped alanine-based assemblies (Ac-Ala) by changing the amino acid chirality and mixing with a nonchiral bipyridine derivative (BPA). The co-assembly induced distinct solid-state stacking modes determined by X-ray crystallography, resulting in significantly enhanced electromechanical properties of the assembly architectures. The highest rigidity was observed after the co-assembly of racemic Ac-Ala with a bipyridine coformer (BPA/Ac-DL-Ala), which exhibited a measured Young's modulus of 38.8 GPa. Notably, BPA crystallizes in a centrosymmetric space group, a condition that is broken when co-crystallized with Ac-L-Ala and Ac-D-Ala to induce a piezoelectric response. Enantiopure co-assemblies of BPA/Ac-D-Ala and BPA/Ac-L-Ala showed density functional theory-predicted piezoelectric responses that are remarkably higher than the other assemblies due to the increased polarization of their supramolecular packing. This is the first report of a centrosymmetric-crystallizing coformer which increases the single-crystal piezoelectric response of an electrically active bio-inspired molecular assembly. The design rules that emerge from this investigation of chemically complex co-assemblies can facilitate the molecular design of high-performance functional materials comprised of bio-inspired building blocks.


Assuntos
Alanina , Aminoácidos , Cristalografia por Raios X , Estrutura Molecular
9.
Angew Chem Int Ed Engl ; 61(17): e202201234, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35170170

RESUMO

The physical characteristics of supramolecular assemblies composed of small building blocks are dictated by molecular packing patterns in the solid-state. Yet, the structure-property correlation is still not fully understood. Herein, we report the unexpected cofacial to herringbone stacking transformation of a small aromatic bipyridine through co-assembly with acetylated glutamic acid. The unique solid-state structural transformation results in enhanced physical properties of the supramolecular organizations. The co-assembly methodology was further expanded to obtain diverse molecular packings by different bipyridine and acetylated amino acid derivatives. This study presents a feasible co-assembly approach to achieve the solid-state stacking transformation of supramolecular organization and opens up new opportunities to further explore the relationship between molecular arrangement and properties of supramolecular assemblies by crystal engineering.


Assuntos
Aminoácidos , Ácido Glutâmico , Conformação Molecular
10.
J Am Chem Soc ; 144(8): 3468-3476, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35073071

RESUMO

The apparent piezoelectricity of biological materials is not yet fully understood at the molecular level. In particular, dynamic noncovalent interactions, such as host-guest binding, are not included in the classical piezoelectric model, which limits the rational design of eco-friendly piezoelectric supramolecular materials. Here, inspired by the conformation-dependent mechanoresponse of the Piezo channel proteins, we show that guest-host interactions can amplify the electromechanical response of a conformationally mobile peptide metal-organic framework (MOF) based on the endogenous carnosine dipeptide, demonstrating a new type of adaptive piezoelectric supramolecular material. Density functional theory (DFT) predictions validated by piezoresponse force microscopy (PFM) measurements show that directional alignment of the guest molecules in the host carnosine-zinc peptide MOF channel determines the macroscopic electromechanical properties. We produce stable, robust 1.4 V open-circuit voltage under applied force of 25 N with a frequency of 0.1 Hz. Our findings demonstrate that the regulation of host-guest interactions could serve as an efficient method for engineering sustainable peptide-based power generators.


Assuntos
Carnosina , Estruturas Metalorgânicas , Microscopia de Força Atômica , Conformação Molecular , Compostos Orgânicos
11.
J Mater Chem B ; 10(9): 1378-1385, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35080573

RESUMO

Metal-organic frameworks (MOFs) are promising multifunctional porous materials for biomedical and environmental applications. Here, we report synthesis and characterization of a new MOF based on the tetrahedral secondary building unit [Zn4O(CBAB)3]n (NUIG4), where CBABH2 = 4-((4-carboxybenzylidene)amino)benzoic acid. NUIG4 belongs to the family of MOFs with primitive cubic pcu topology, being a rare example with 4-fold interpenetration. The pore architecture enables unprecedentedly high doxorubicin (DOX) loading capacity (1955 mg DOX/g NUIG4) with pH-controlled release. Solid-state NMR and ab initio modeling confirmed formation of aromatic π-π stacking interactions between DOX and the framework. Preliminary cell-line experiments suggested a protective effect of NUIG4 on healthy HDF cells against DOX toxicity. NUIG4 also displays potential for adsorptive small-molecule gas separation, with a BET surface area of 1358 m2 g-1 and high selectivity of 2.75 for C2H2 over CO2.


Assuntos
Estruturas Metalorgânicas , Adsorção , Doxorrubicina/química , Doxorrubicina/farmacologia , Estruturas Metalorgânicas/química , Porosidade
12.
Healthcare (Basel) ; 9(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34946372

RESUMO

When anesthesia checklists and preparations are performed urgently, omissions may occur and be deleterious to the patient. The aim of this study was to evaluate in simulation the interest of a cognitive aid to effectively prepare an anesthetic room for an emergency. In a prospective single-center simulation-based study, 32 anesthesia residents had to prepare an anesthetic room in an emergency scenario, without cognitive aid in the first phase. Three months later (phase 2), they were randomly assigned to receive a cognitive aid (aid group) or no additional aid (control) and were involved in the same scenario. The primary outcome was the validation rate of each essential item in the first 5 min in phase 2. Eight items were significantly more frequently completed in the first 5 min in the aid group in phase 2 (vs. phase 1), compared with two only in the control group. However, there were no significant differences in the overall number of completed items between the two groups, as both groups completed significantly more items in phase 2, either in the first 5 min (19 (14-23) vs. 13 (9-15) in phase 1 for all residents, p < 0.001) or without time limit. Preparation times were reduced in phase 2 in both groups. In conclusion, the use of a cognitive aid allowed anesthesia residents to complete some safety items of a simulated urgent anesthesia preparation more frequently. In addition, despite daily clinical experience, a single simulation session improved anesthesia preparation and reduced the preparation time with or without cognitive aid.

13.
Cryst Growth Des ; 21(10): 5818-5827, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34650339

RESUMO

Cocrystallization of two or more molecular compounds can dramatically change the physicochemical properties of a functional molecule without the need for chemical modification. For example, coformers can enhance the mechanical stability, processability, and solubility of pharmaceutical compounds to enable better medicines. Here, we demonstrate that amino acid cocrystals can enhance functional electromechanical properties in simple, sustainable materials as exemplified by glycine and sulfamic acid. These coformers crystallize independently in centrosymmetric space groups when they are grown as single-component crystals but form a noncentrosymmetric, electromechanically active ionic cocrystal when they are crystallized together. The piezoelectricity of the cocrystal is characterized using techniques tailored to overcome the challenges associated with measuring the electromechanical properties of soft (organic) crystals. The piezoelectric tensor of the cocrystal is mapped using density functional theory (DFT) computer models, and the predicted single-crystal longitudinal response of 2 pC/N is verified using second-harmonic generation (SHG) and piezoresponse force microscopy (PFM). The experimental measurements are facilitated by polycrystalline film growth that allows for macroscopic and nanoscale quantification of the longitudinal out-of-plane response, which is in the range exploited in piezoelectric technologies made from quartz, aluminum nitride, and zinc oxide. The large-area polycrystalline film retains a damped response of ≥0.2 pC/N, indicating the potential for application of such inexpensive and eco-friendly amino acid-based cocrystal coatings in, for example, autonomous ambient-powered devices in edge computing.

14.
Nat Commun ; 12(1): 2634, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976129

RESUMO

Realization of a self-assembled, nontoxic and eco-friendly piezoelectric device with high-performance, sensitivity and reliability is highly desirable to complement conventional inorganic and polymer based materials. Hierarchically organized natural materials such as collagen have long been posited to exhibit electromechanical properties that could potentially be amplified via molecular engineering to produce technologically relevant piezoelectricity. Here, by using a simple, minimalistic, building block of collagen, we fabricate a peptide-based piezoelectric generator utilising a radically different helical arrangement of Phe-Phe-derived peptide, Pro-Phe-Phe and Hyp-Phe-Phe, based only on proteinogenic amino acids. The simple addition of a hydroxyl group increases the expected piezoelectric response by an order of magnitude (d35 = 27 pm V-1). The value is highest predicted to date in short natural peptides. We demonstrate tripeptide-based power generator that produces stable max current >50 nA and potential >1.2 V. Our results provide a promising device demonstration of computationally-guided molecular engineering of piezoelectricity in peptide nanotechnology.


Assuntos
Fontes de Energia Bioelétrica , Materiais Biomiméticos/química , Biomimética/métodos , Engenharia Química/métodos , Oligopeptídeos/química , Materiais Biomiméticos/metabolismo , Colágeno/química , Desenho Assistido por Computador , Microscopia Eletrônica de Transmissão , Simulação de Dinâmica Molecular , Oligopeptídeos/metabolismo , Conformação Proteica em alfa-Hélice , Reprodutibilidade dos Testes , Difração de Raios X
15.
Int J Pharm ; 601: 120514, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33766638

RESUMO

Discovery of novel cocrystal systems and improvement of their physicochemical properties dominates the current literature on cocrystals yet the required end-product formulation is rarely addressed. Drug product manufacturing includes complex API solid state processing steps such as milling, granulation, and tableting. These all require high mechanical stress which can lead to solid-state phase transformations into polymorphs and solvates, or lead to dissociation of cocrystals into their individual components. Here we measured the effect of tablet excipients on solid-state processing of a range of pharmaceutical cocrystal formulations. Our findings were rationalised using Density Functional Theory (DFT) calculations of intermolecular binding energies of cocrystal constituents and co-milling excipients. A 1:1 stoichiometric ratio of API Theophylline (THP) and co-former 4-Aminobenzoic acid (4ABA) was co-milled with five different excipients: hydroxypropylmethylcellulose (HPMC), polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), lactose, and microcrystalline cellulose (MCC). The experiments were carried out in 10 and 25 ml milling jars at 30 Hz for different milling times. Co-milled samples were characterised for formation of cocrystals and phase transformation using powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC). Our data shows that co-milling in the presence of PEG, HMPC or lactose yields purer cocrystals, supported by the calculated stronger excipient interactions for PVP and MCC. We identify a suitably-prepared THP-4ABA pharmaceutical cocrystal formulation that is stable under extended milling conditions.


Assuntos
Excipientes , Varredura Diferencial de Calorimetria , Cristalização , Comprimidos , Difração de Raios X
16.
Nat Mater ; 20(5): 574-575, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33432144
17.
Adv Mater ; 32(46): e2002873, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33058247

RESUMO

Second-harmonic generation (SHG) is a nonlinear optical process that can provide disease diagnosis through characterization of biological building blocks such as amino acids, peptides, and proteins. The second-order nonlinear susceptibility tensor χ(2) of a material characterizes its tendency to cause SHG. Here, a method for finding the χ(2) elements from polarization-resolved SHG microscopy in transmission mode is presented. The quantitative framework and analytical approach that corrects for micrometer-scale morphology and birefringence enable the determination and comparison of the SHG susceptibility tensors of ß- and γ-phase glycine microneedles. The maximum nonlinear susceptibility coefficients are d33  = 15 pm V-1 for the ß and d33  = 5.9 pm V-1 for the γ phase. The results demonstrate glycine as a useful biocompatible nonlinear material. This combination of the analytical model and polarization-resolved SHG transmission microscopy is broadly applicable for quantitative SHG material characterization and diagnostic imaging.


Assuntos
Glicina , Microscopia/instrumentação , Microtecnologia/instrumentação , Agulhas , Teste de Materiais
18.
ACS Nano ; 14(8): 10704-10715, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32806055

RESUMO

Molecular stacking modes, generally classified as H-, J-, and X-aggregation, play a key role in determining the optoelectronic properties of organic crystals. However, the control of stacking transformation of a specific molecule is an unmet challenge, and a priori prediction of the performance in different stacking modes is extraordinarily difficult to achieve. In particular, the existence of hybrid stacking modes and their combined effect on physicochemical properties of molecular crystals are not fully understood. Herein, unexpected stacking transformation from H- to J- and X-aggregation is observed in the crystal structure of a small heterocyclic molecule, 4,4'-bipyridine (4,4'-Bpy), upon coassembly with N-acetyl-l-alanine (AcA), a nonaromatic amino acid derivative. This structural transformation into hybrid stacking mode improves physicochemical properties of the cocrystals, including a large red-shifted emission, enhanced supramolecular chirality, improved thermal stability, and higher mechanical properties. While a single crystal of 4,4'-Bpy shows good optical waveguiding and piezoelectric properties due to the uniform elongated needles and low symmetry of crystal packing, the significantly lower band gap and resistance of the cocrystal indicate improved conductivity. This study not only demonstrates cocrystallization-induced packing transformation between H-, J-, and X-aggregations in the solid state, leading to tunable mechanical and optoelectronic properties, but also will inspire future molecular design of organic functional materials by the coassembly strategy.

19.
ACS Nano ; 14(6): 7025-7037, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32441511

RESUMO

Diphenylalanine (FF) represents the simplest peptide building block that self-assembles into ordered nanostructures with interesting physical properties. Among self-assembled peptide structures, FF nanotubes display notable stiffness and piezoelectric parameters (Young's modulus = 19-27 GPa, strain coefficient d33 = 18 pC/N). Yet, inorganic alternatives remain the major materials of choice for many applications due to higher stiffness and piezoelectricity. Here, aiming to broaden the applications of the FF motif in materials chemistry, we designed three phenyl-rich dipeptides based on the ß,ß-diphenyl-Ala-OH (Dip) unit: Dip-Dip, cyclo-Dip-Dip, and tert-butyloxycarbonyl (Boc)-Dip-Dip. The doubled number of aromatic groups per unit, compared to FF, produced a dense aromatic zipper network with a dramatically improved Young's modulus of ∼70 GPa, which is comparable to aluminum. The piezoelectric strain coefficient d33 of ∼73 pC/N of such assembly exceeds that of poled polyvinylidene-fluoride (PVDF) polymers and compares well to that of lead zirconium titanate (PZT) thin films and ribbons. The rationally designed π-π assemblies show a voltage coefficient of 2-3 Vm/N, an order of magnitude higher than PVDF, improved thermal stability up to 360 °C (∼60 °C higher than FF), and useful photoluminescence with wide-range excitation-dependent emission in the visible region. Our data demonstrate that aromatic groups improve the rigidity and piezoelectricity of organic self-assembled materials for numerous applications.


Assuntos
Nanoestruturas , Fenilalanina , Dipeptídeos , Peptídeos
20.
Energy Environ Sci ; 13(1): 96-101, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31976008

RESUMO

Bioinspired assemblies bear massive potential for energy generation and storage. Yet, biological molecules have severe limitations for charge transfer. Here, we report l-tryptophan-d-tryptophan assembling architectures comprising alternating water and peptide layers. The extensive connection of water molecules results in significant dipole-dipole interactions and piezoelectric response that can be further engineered by doping via iodine adsorption or isotope replacement with no change in the chemical composition. This simple system and the new doping strategies supply alternative solutions for enhancing charge transfer in bioinspired supramolecular architectures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...