Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genet Mol Biol ; 44(2): e20200448, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34137427

RESUMO

The inclusion of a genetic risk score (GRS) can modify the risk prediction of coronary artery disease (CAD), providing an advantage over the use of traditional models. The predictive value of the genetic information on the recurrence of major adverse cardiovascular events (MACE) remains controversial. A total of 33 genetic variants previously associated with CAD were genotyped in 1587 CAD patients from the GENEMACOR study. Of these, 18 variants presented an hazard ratio >1, so they were selected to construct a weighted GRS (wGRS). MACE discrimination and reclassification were evaluated by C-Statistic, Net Reclassification Index and Integrated Discrimination Improvement methodologies. After the addition of wGRS to traditional predictors, the C-index increased from 0.566 to 0.572 (p=0.0003). Subsequently, adding wGRS to traditional plus clinical risk factors, this model slightly improved from 0.620 to 0.622 but with statistical significance (p=0.004). NRI showed that 17.9% of the cohort was better reclassified when the primary model was associated with wGRS. The Kaplan-Meier estimator showed that, at 15-year follow-up, the group with a higher number of risk alleles had a significantly higher MACE occurrence (p=0.011). In CAD patients, wGRS improved MACE risk prediction, discrimination and reclassification over the conventional factors, providing better cost-effective therapeutic strategies.

2.
Genet Mol Biol ; 41(4): 766-774, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30571812

RESUMO

The utility of genetic risk scores (GRS) as independent risk predictors remains inconclusive. Here, we evaluate the additive value of a multi-locus GRS to the Framingham risk score (FRS) in coronary artery disease (CAD) risk prediction. A total of 2888 individuals (1566 coronary patients and 1322 controls) were divided into three subgroups according to FRS. Multiplicative GRS was determined for 32 genetic variants associated to CAD. Logistic Regression and Area Under the Curve (AUC) were determined first, using the TRF for each FRS subgroup, and secondly, adding GRS. Different models (TRF, TRF+GRS) were used to classify the subjects into risk categories for the FRS 10-year predicted risk. The improvement offered by GRS was expressed as Net Reclassification Index and Integrated Discrimination Improvement. Multivariate analysis showed that GRS was an independent predictor for CAD (OR = 1.87; p<0.0001). Diabetes, arterial hypertension, dyslipidemia and smoking status were also independent CAD predictors (p<0.05). GRS added predictive value to TRF across all risk subgroups. NRI showed a significant improvement in all categories. In conclusion, GRS provided a better incremental value in intermediate subgroup. In this subgroup, inclusion of genotyping may be considered to better stratify cardiovascular risk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA